Skip to main content
Log in

Report on the Ion Channel Symposium

Organized by the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18)

Bericht vom Ionenkanal-Symposium

Organisiert von der Arbeitsgruppe „Zelluläre Elektrophysiologie“ der Deutschen Gesellschaft für Kardiologie (AG 18)

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Abstract

To support scientific exchange and activity in the field of cardiac cellular electrophysiology, the German Cardiac Society Working Group on Cellular Electrophysiology (AG 18) established a two-day symposium to be held every 2 years. The second Ion Channel Symposium entitled “Göttingen Channels 2017—Of Benches and Beds” took place in Göttingen from September 22nd to 23rd under the auspices of the German Cardiac Society. A group of national and international experts presented scientific advances in cardiac electrophysiology and rhythmology. The symposium’s primary focus was the significance of cellular electrophysiology findings for the optimization of diagnostic and therapeutic strategies against cardiac arrhythmias. To this end, speakers, chairpersons and attendees discussed the contribution of specific molecular alterations to the initiation and perpetuation of atrial and ventricular arrhythmias. Furthermore, the meeting highlighted how discoveries in electrophysiological research may lead to novel therapeutic targets. The interdisciplinary assessment of mechanisms and therapeutic strategies of cardiac arrhythmias represented a key feature of the meeting. A unique combination of topics and speakers representing both basic science and clinical electrophysiology ensured the scientific success of the “Göttingen Channels 2017” symposium. The next Ion Channel Symposium is planned to be hosted by the incoming co-chair of the German Cardiac Society Working Group on Cellular Electrophysiology in fall 2019.

Zusammenfassung

Zur Förderung des wissenschaftlichen Austauschs und der Aktivität auf dem Gebiet der zellulären kardialen Elektrophysiologie hat die Arbeitsgruppe „Zelluläre Elektrophysiologie“ (AG 18) der Deutschen Gesellschaft für Kardiologie (DGK) ein zweitägiges Symposium eingerichtet, das in zweijährigem Turnus stattfinden soll. Das zweite Symposium dieser Reihe wurde vom 22. bis 23. September 2017 in Göttingen mit dem Titel „Göttingen Channels 2017 – Of Benches and Beds“ unter der Schirmherrschaft der DGK ausgerichtet. Eine Gruppe von nationalen und internationalen Experten präsentierte in diesem Rahmen wissenschaftliche Erkenntnisse auf dem Gebiet der Herzrhythmusstörungen. Das Schwerpunktthema des Symposiums war die Bedeutung zellulärer elektrophysiologischer Erkenntnisse für die Verbesserung der diagnostischen und therapeutischen Strategien zum Management von Arrhythmien. Dazu wurde erläutert, welche spezifischen Veränderungen auf molekularer Ebene zur Entstehung und Aufrechterhaltung von atrialen und ventrikulären Arrhythmien führen und wie diese therapeutisch beeinflusst werden können. Das spezielle Charakteristikum dieses Treffens war eine interdisziplinäre Betrachtung von Ursachen und Behandlungsansätzen von Rhythmusstörungen, ermöglicht durch eine einzigartige Kombination von grundlagenwissenschaftlichen und klinischen Themen und Referenten. Die nächste Durchführung dieses Symposiums ist im Herbst 2019 unter der wissenschaftlichen Leitung des stellvertretenden Sprechers der Arbeitsgruppe „Zelluläre Elektrophysiologie“ und unter Mitwirkung der AG 18 vorgesehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Williams GS, Boyman L, Lederer WJ (2015) Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 78:35–45. https://doi.org/10.1016/j.yjmcc.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  2. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70(2):391–425. https://doi.org/10.1152/physrev.1990.70.2.391

    Article  CAS  PubMed  Google Scholar 

  3. Kohlhaas M, Nickel AG, Maack C (2017) Mitochondrial energetics and calcium coupling in the heart. J Physiol 595(12):3753–3763. https://doi.org/10.1113/JP273609

    Article  CAS  PubMed  Google Scholar 

  4. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205. https://doi.org/10.1038/415198a

    Article  CAS  PubMed  Google Scholar 

  5. Hoppe UC (2010) Mitochondrial calcium channels. Febs Lett 584(10):1975–1981. https://doi.org/10.1016/j.febslet.2010.04.017

    Article  CAS  PubMed  Google Scholar 

  6. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340. https://doi.org/10.1038/nature10230

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Sargent MA, York AJ, Zhang J, Bers DM, Molkentin JD (2015) The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep 12(1):15–22. https://doi.org/10.1016/j.celrep.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boyman L, Williams GS, Khananshvili D, Sekler I, Lederer WJ (2013) NCLX: the mitochondrial sodium calcium exchanger. J Mol Cell Cardiol 59:205–213. https://doi.org/10.1016/j.yjmcc.2013.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P (2017) Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. https://doi.org/10.1016/j.ceca.2017.05.004

    PubMed  Google Scholar 

  10. Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519. https://doi.org/10.1038/74994

    Article  CAS  PubMed  Google Scholar 

  11. Drago I, De Stefani D, Rizzuto R, Pozzan T (2012) Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Natl Acad Sci USA 109(32):12986–12991. https://doi.org/10.1073/pnas.1210718109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boyman L, Chikando AC, Williams GS, Khairallah RJ, Kettlewell S, Ward CW, Smith GL, Kao JP, Lederer WJ (2014) Calcium movement in cardiac mitochondria. Biophys J 107(6):1289–1301. https://doi.org/10.1016/j.bpj.2014.07.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paillard M, Csordas G, Szanda G, Golenar T, Debattisti V, Bartok A, Wang N, Moffat C, Seifert EL, Spat A, Hajnoczky G (2017) Tissue-specific mitochondrial decoding of cytoplasmic Ca2+ signals is controlled by the stoichiometry of MICU1/2 and MCU. Cell Rep 18(10):2291–2300. https://doi.org/10.1016/j.celrep.2017.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lu J, Zang WJ, Yu XJ, Chen LN, Zhang CH, Jia B (2005) Effects of ischaemia-mimetic factors on isolated rat ventricular myocytes. Exp Physiol 90(4):497–505. https://doi.org/10.1113/expphysiol.2004.029421

    Article  PubMed  Google Scholar 

  15. Ronchi C, Torre E, Rizzetto R, Bernardi J, Rocchetti M, Zaza A (2017) Late sodium current and intracellular ionic homeostasis in acute ischemia. Basic Res Cardiol 112(2):12. https://doi.org/10.1007/s00395-017-0602-9

    Article  PubMed  Google Scholar 

  16. Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Bohm M, O’Rourke B, Maack C (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121(14):1606–1613. https://doi.org/10.1161/CIRCULATIONAHA.109.914911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heinzel FR, Luo Y, Dodoni G, Boengler K, Petrat F, Di Lisa F, de Groot H, Schulz R, Heusch G (2006) Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes. Cardiovasc Res 71(2):374–382. https://doi.org/10.1016/j.cardiores.2006.05.014

    Article  CAS  PubMed  Google Scholar 

  18. Nickel AG, von Hardenberg A, Hohl M, Loffler JR, Kohlhaas M, Becker J, Reil JC, Kazakov A, Bonnekoh J, Stadelmaier M, Puhl SL, Wagner M, Bogeski I, Cortassa S, Kappl R, Pasieka B, Lafontaine M, Lancaster CR, Blacker TS, Hall AR, Duchen MR, Kastner L, Lipp P, Zeller T, Muller C, Knopp A, Laufs U, Bohm M, Hoth M, Maack C (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22(3):472–484. https://doi.org/10.1016/j.cmet.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  19. Dudek J, Maack C (2017) Barth syndrome cardiomyopathy. Cardiovasc Res. https://doi.org/10.1093/cvr/cvx014

    PubMed  Google Scholar 

  20. Aon MA, Cortassa S, Marban E, O’Rourke B (2003) Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278(45):44735–44744. https://doi.org/10.1074/jbc.M302673200

    Article  CAS  PubMed  Google Scholar 

  21. Martin GM, Kandasamy B, DiMaio F, Yoshioka C, Shyng SL (2017) Anti-diabetic drug binding site in a mammalian KATP channel revealed by Cryo-EM. Elife 6. https://doi.org/10.7554/eLife.31054

    Google Scholar 

  22. Arakel EC, Brandenburg S, Uchida K, Zhang H, Lin YW, Kohl T, Schrul B, Sulkin MS, Efimov IR, Nichols CG, Lehnart SE, Schwappach B (2014) Tuning the electrical properties of the heart by differential trafficking of KATP ion channel complexes. J Cell Sci 127(9):2106–2119. https://doi.org/10.1242/jcs.141440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heijman J, Voigt N, Nattel S, Dobrev D (2014) Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res 114(9):1483–1499. https://doi.org/10.1161/circresaha.114.302226

    Article  CAS  PubMed  Google Scholar 

  24. Wakili R, Voigt N, Kaab S, Dobrev D, Nattel S (2011) Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest 121(8):2955–2968. https://doi.org/10.1172/jci46315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li N, Chiang DY, Wang SF, Wang QL, Sun L, Voigt N, Respress JL, Ather S, Skapura DG, Jordan VK, Horrigan FT, Schmitz W, Muller FU, Valderrabano M, Nattel S, Dobrev D, Wehrens XHT (2014) Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model. Circulation 129(12):1276–1285. https://doi.org/10.1161/circulationaha.113.006611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, Wehrens XH, Nattel S, Dobrev D (2014) Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129(2):145–156. https://doi.org/10.1161/CIRCULATIONAHA.113.006641

    Article  CAS  PubMed  Google Scholar 

  27. Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XH, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125(17):2059–2070. https://doi.org/10.1161/CIRCULATIONAHA.111.067306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Voigt N, Trausch A, Knaut M, Matschke K, Varro A, Van Wagoner DR, Nattel S, Ravens U, Dobrev D (2010) Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 3(5):472–480. https://doi.org/10.1161/CIRCEP.110.954636

    Article  PubMed  Google Scholar 

  29. Schmidt C, Wiedmann F, Voigt N, Zhou XB, Heijman J, Lang S, Albert V, Kallenberger S, Ruhparwar A, Szabo G, Kallenbach K, Karck M, Borggrefe M, Biliczki P, Ehrlich JR, Baczko I, Lugenbiel P, Schweizer PA, Donner BC, Katus HA, Dobrev D, Thomas D (2015) Upregulation of K(2P)3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation 132(2):82–92. https://doi.org/10.1161/CIRCULATIONAHA.114.012657

    Article  CAS  PubMed  Google Scholar 

  30. Christ T, Boknik P, Wohrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D (2004) L‑type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110(17):2651–2657. https://doi.org/10.1161/01.CIR.0000145659.80212.6A

    Article  CAS  PubMed  Google Scholar 

  31. Voigt N, Friedrich A, Bock M, Wettwer E, Christ T, Knaut M, Strasser RH, Ravens U, Dobrev D (2007) Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK,ACh channels in patients with chronic atrial fibrillation. Cardiovasc Res 74(3):426–437. https://doi.org/10.1016/j.cardiores.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  32. Comtois P, Kneller J, Nattel S (2005) Of circles and spirals: bridging the gap between the leading circle and spiral wave concepts of cardiac reentry. Europace 7(Suppl 2):10–20. https://doi.org/10.1016/j.eupc.2005.05.011

    Article  PubMed  Google Scholar 

  33. Brambatti M, Connolly SJ, Gold MR, Morillo CA, Capucci A, Muto C, Lau CP, Van Gelder IC, Hohnloser SH, Carlson M, Fain E, Nakamya J, Mairesse GH, Halytska M, Deng WQ, Israel CW, Healey JS, Investigators A (2014) Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation 129(21):2094–2099. https://doi.org/10.1161/CIRCULATIONAHA.113.007825

    Article  PubMed  Google Scholar 

  34. Spronk HM, De Jong AM, Verheule S, De Boer HC, Maass AH, Lau DH, Rienstra M, van Hunnik A, Kuiper M, Lumeij S, Zeemering S, Linz D, Kamphuisen PW, Ten Cate H, Crijns HJ, Van Gelder IC, van Zonneveld AJ, Schotten U (2017) Hypercoagulability causes atrial fibrosis and promotes atrial fibrillation. Eur Heart J 38(1):38–50. https://doi.org/10.1093/eurheartj/ehw119

    Article  PubMed  Google Scholar 

  35. Dawson K, Wakili R, Ordog B, Clauss S, Chen Y, Iwasaki Y, Voigt N, Qi XY, Sinner MF, Dobrev D, Kaab S, Nattel S (2013) MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127(14):1466. https://doi.org/10.1161/CIRCULATIONAHA.112.001207

    Article  CAS  PubMed  Google Scholar 

  36. Clauss S, Klier I, Schmidt V, Schuessler F, Siebermair J, Sinner M, Fichtner S, Estner H, Kääb S, Wakili R (2014) MicroRNAs as potential biomarkers of atrial fibrillation ablation therapy. Heart Rhythm 11(5 (Supplement)):AB36–6

    Google Scholar 

  37. Clauss S, Sinner MF, Kaab S, Wakili R (2015) The role of microRNas in antiarrhythmic therapy for atrial fibrillation. Arrhythm Electrophysiol Rev 4(3):146–155. https://doi.org/10.15420/aer.2015.4.3.146

    Article  PubMed  PubMed Central  Google Scholar 

  38. Molina CE, Voigt N (2017) Finding Ms or Mr right: which miRNA to target in AF? J Mol Cell Cardiol 102:22–25. https://doi.org/10.1016/j.yjmcc.2016.11.007

    Article  CAS  PubMed  Google Scholar 

  39. Al Chekakie MO, Welles CC, Metoyer R, Ibrahim A, Shapira AR, Cytron J, Santucci P, Wilber DJ, Akar JG (2010) Pericardial fat is independently associated with human atrial fibrillation. J Am Coll Cardiol 56(10):784–788. https://doi.org/10.1016/j.jacc.2010.03.071

    Article  PubMed  Google Scholar 

  40. Wong CX, Abed HS, Molaee P, Nelson AJ, Brooks AG, Sharma G, Leong DP, Lau DH, Middeldorp ME, Roberts-Thomson KC, Wittert GA, Abhayaratna WP, Worthley SG, Sanders P (2011) Pericardial fat is associated with atrial fibrillation severity and ablation outcome. J Am Coll Cardiol 57(17):1745–1751. https://doi.org/10.1016/j.jacc.2010.11.045

    Article  PubMed  Google Scholar 

  41. Andrade J, Khairy P, Dobrev D, Nattel S (2014) The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res 114(9):1453–1468. https://doi.org/10.1161/CIRCRESAHA.114.303211

    Article  CAS  PubMed  Google Scholar 

  42. Suffee N, Moore-Morris T, Farahmand P, Rucker-Martin C, Dilanian G, Fradet M, Sawaki D, Derumeaux G, LePrince P, Clement K, Dugail I, Puceat M, Hatem SN (2017) Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria. Proc Natl Acad Sci USA 114(5):E771–E780. https://doi.org/10.1073/pnas.1610968114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, Amour J, Leprince P, Dutour A, Clement K, Hatem SN (2015) Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 36(13):795–805a. https://doi.org/10.1093/eurheartj/eht099

    Article  CAS  PubMed  Google Scholar 

  44. Ausma J, Coumans WA, Duimel H, Van der Vusse GJ, Allessie MA, Borgers M (2000) Atrial high energy phosphate content and mitochondrial enzyme activity during chronic atrial fibrillation. Cardiovasc Res 47(4):788–796. https://doi.org/10.1016/S0008-6363(00)00139-5

    Article  CAS  PubMed  Google Scholar 

  45. Mihos CG, Krishna RK, Kherada N, Larrauri-Reyes M, Tolentino A, Santana O (2016) The use of ranolazine in non-anginal cardiovascular disorders: a review of current data and ongoing randomized clinical trials. Pharmacol Res 103:49–55. https://doi.org/10.1016/j.phrs.2015.10.018

    Article  CAS  PubMed  Google Scholar 

  46. van Bragt KA, Nasrallah HM, Kuiper M, Luiken JJ, Schotten U, Verheule S (2014) Atrial supply-demand balance in healthy adult pigs: coronary blood flow, oxygen extraction, and lactate production during acute atrial fibrillation. Cardiovasc Res 101(1):9–19. https://doi.org/10.1093/cvr/cvt239

    Article  PubMed  Google Scholar 

  47. Darby AE, Dimarco JP (2012) Management of atrial fibrillation in patients with structural heart disease. Circulation 125(7):945–957. https://doi.org/10.1161/CIRCULATIONAHA.111.019935

    Article  PubMed  Google Scholar 

  48. Maisel WH, Stevenson LW (2003) Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol 91(6A):2D–8D

    Article  PubMed  Google Scholar 

  49. Heijman J, Voigt N, Abu-Taha IH, Dobrev D (2013) Rhythm control of atrial fibrillation in heart failure. Heart Fail Clin 9(4):407–415. https://doi.org/10.1016/j.hfc.2013.06.001

    Article  PubMed  Google Scholar 

  50. Wijesurendra RS, Liu A, Eichhorn C, Ariga R, Levelt E, Clarke WT, Rodgers CT, Karamitsos TD, Bashir Y, Ginks M, Rajappan K, Betts T, Ferreira VM, Neubauer S, Casadei B (2016) Lone atrial fibrillation is associated with impaired left ventricular energetics that persists despite successful catheter ablation. Circulation 134(15):1068–1081. https://doi.org/10.1161/CIRCULATIONAHA.116.022931

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P, Kaab S, Ravens U, Coutu P, Dobrev D, Nattel S (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1(2):93–102. https://doi.org/10.1161/CIRCEP.107.754788

    Article  CAS  PubMed  Google Scholar 

  52. Cardin S, Li D, Thorin-Trescases N, Leung TK, Thorin E, Nattel S (2003) Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc Res 60(2):315–325

    Article  CAS  PubMed  Google Scholar 

  53. Sanders P, Morton JB, Davidson NC, Spence SJ, Vohra JK, Sparks PB, Kalman JM (2003) Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans. Circulation 108(12):1461–1468. https://doi.org/10.1161/01.CIR.0000090688.49283.67

    Article  PubMed  Google Scholar 

  54. Koumi S, Arentzen CE, Backer CL, Wasserstrom JA (1994) Alterations in muscarinic K+ channel response to acetylcholine and to G protein-mediated activation in atrial myocytes isolated from failing human hearts. Circulation 90(5):2213–2224. https://doi.org/10.1161/01.CIR.90.5.2213

    Article  CAS  PubMed  Google Scholar 

  55. Fedorov VV, Glukhov AV, Ambrosi CM, Kostecki G, Chang R, Janks D, Schuessler RB, Moazami N, Nichols CG, Efimov IR (2011) Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts. J Mol Cell Cardiol 51(2):215–225. https://doi.org/10.1016/j.yjmcc.2011.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt C, Wiedmann F, Zhou XB, Heijman J, Voigt N, Ratte A, Lang S, Kallenberger SM, Campana C, Weymann A, De Simone R, Szabo G, Ruhparwar A, Kallenbach K, Karck M, Ehrlich JR, Baczko I, Borggrefe M, Ravens U, Dobrev D, Katus HA, Thomas D (2017) Inverse remodelling of K2P3.1 K+ channel expression and action potential duration in left ventricular dysfunction and atrial fibrillation: implications for patient-specific antiarrhythmic drug therapy. Eur Heart J 38(22):1764–1774. https://doi.org/10.1093/eurheartj/ehw559

    PubMed  Google Scholar 

  57. Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kuhlkamp V (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44(1):121–131

    Article  CAS  PubMed  Google Scholar 

  58. Grandi E, Pandit SV, Voigt N, Workman AJ, Dobrev D, Jalife J, Bers DM (2011) Human atrial action potential and Ca2+ model: sinus rhythm and chronic atrial fibrillation. Circ Res 109(9):1055–1066. https://doi.org/10.1161/CIRCRESAHA.111.253955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ravens U, Katircioglu-Ozturk D, Wettwer E, Christ T, Dobrev D, Voigt N, Poulet C, Loose S, Simon J, Stein A, Matschke K, Knaut M, Oto E, Oto A, Guvenir HA (2015) Application of the RIMARC algorithm to a large data set of action potentials and clinical parameters for risk prediction of atrial fibrillation. Med Biol Eng Comput 53(3):263–273. https://doi.org/10.1007/s11517-014-1232-0

    Article  PubMed  Google Scholar 

  60. Schmidt C, Wiedmann F, Schweizer PA, Katus HA, Thomas D (2014) Inhibition of cardiac two-pore-domain K+ (K2P) channels—an emerging antiarrhythmic concept. Eur J Pharmacol 738:250–255. https://doi.org/10.1016/j.ejphar.2014.05.056

    Article  CAS  PubMed  Google Scholar 

  61. Hohendanner F, DeSantiago J, Heinzel FR, Blatter LA (2016) Dyssynchronous calcium removal in heart failure-induced atrial remodeling. Am J Physiol Heart Circ Physiol 311(6):H1352–H1359. https://doi.org/10.1152/ajpheart.00375.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hohendanner F, Walther S, Maxwell JT, Kettlewell S, Awad S, Smith GL, Lonchyna VA, Blatter LA (2015) Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol 593(6):1459–1477. https://doi.org/10.1113/jphysiol.2014.283226

    Article  CAS  PubMed  Google Scholar 

  63. Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, Chandran A, Wang L, Arora K, Rosenthal NA, Tallquist MD (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409. https://doi.org/10.1161/CIRCRESAHA.115.307778

    Article  CAS  PubMed  Google Scholar 

  64. Rohr S (2009) Myofibroblasts in diseased hearts: new players in cardiac arrhythmias? Heart Rhythm 6(6):848–856. https://doi.org/10.1016/j.hrthm.2009.02.038

    Article  PubMed  Google Scholar 

  65. Gourdie RG, Dimmeler S, Kohl P (2016) Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov 15(9):620–638. https://doi.org/10.1038/nrd.2016.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Schotten U, Van Wagoner DR, Dobrev D, Nattel S (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126(17):2051–2064. https://doi.org/10.1161/CIRCULATIONAHA.112.121830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kohl P, Gourdie RG (2014) Fibroblast-myocyte electrotonic coupling: does it occur in native cardiac tissue? J Mol Cell Cardiol 70:37–46. https://doi.org/10.1016/j.yjmcc.2013.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peyronnet R, Nerbonne JM, Kohl P (2016) Cardiac mechano-gated Ion channels and arrhythmias. Circ Res 118(2):311–329. https://doi.org/10.1161/CIRCRESAHA.115.305043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gaudesius G, Miragoli M, Thomas SP, Rohr S (2003) Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ Res 93(5):421–428. https://doi.org/10.1161/01.RES.0000089258.40661.0C

    Article  CAS  PubMed  Google Scholar 

  70. Miragoli M, Gaudesius G, Rohr S (2006) Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circ Res 98(6):801–810. https://doi.org/10.1161/01.RES.0000214537.44195.a3

    Article  CAS  PubMed  Google Scholar 

  71. Miragoli M, Salvarani N, Rohr S (2007) Myofibroblasts induce ectopic activity in cardiac tissue. Circ Res 101(8):755–758. https://doi.org/10.1161/CIRCRESAHA.107.160549

    CAS  PubMed  Google Scholar 

  72. Salvarani N, Maguy A, De Simone SA, Miragoli M, Jousset F, Rohr S (2017) TGF-beta1 (transforming growth factor-beta1) plays a pivotal role in cardiac myofibroblast arrhythmogenicity. Circ Arrhythm Electrophysiol 10(5):e4567. https://doi.org/10.1161/CIRCEP.116.004567

    Article  CAS  PubMed  Google Scholar 

  73. Brado J, Dechant MJ, Menza M, Komancsek A, Lang CN, Bugger H, Foell D, Jung BA, Stiller B, Bode C, Odening KE (2017) Phase-contrast magnet resonance imaging reveals regional, transmural, and base-to-apex dispersion of mechanical dysfunction in patients with long QT syndrome. Heart Rhythm 14(9):1388–1397. https://doi.org/10.1016/j.hrthm.2017.04.045

    Article  PubMed  Google Scholar 

  74. Lang CN, Menza M, Jochem S, Franke G, Feliz PS, Brunner M, Koren G, Zehender M, Bugger H, Jung BA, Foell D, Bode C, Odening KE (2016) Electro-mechanical dysfunction in long QT syndrome: role for arrhythmogenic risk prediction and modulation by sex and sex hormones. Prog Biophys Mol Biol 120(1):255–269. https://doi.org/10.1016/j.pbiomolbio.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  75. Loomba RS, Buelow MW, Aggarwal S, Arora RR, Kovach J, Ginde S (2017) Arrhythmias in adults with congenital heart disease: what are risk factors for specific arrhythmias? Pacing Clin Electrophysiol 40(4):353–361. https://doi.org/10.1111/pace.12983

    Article  PubMed  Google Scholar 

  76. Knollmann BC (2013) Induced pluripotent stem cell-derived cardiomyocytes: boutique science or valuable arrhythmia model? Circ Res 112(6):969–976. https://doi.org/10.1161/CIRCRESAHA.112.300567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Myles RC, Bernus O, Burton FL, Cobbe SM, Smith GL (2010) Effect of activation sequence on transmural patterns of repolarization and action potential duration in rabbit ventricular myocardium. Am J Physiol Heart Circ Physiol 299(6):H1812–1822. https://doi.org/10.1152/ajpheart.00518.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Colatsky T, Fermini B, Gintant G, Pierson JB, Sager P, Sekino Y, Strauss DG, Stockbridge N (2016) The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative—update on progress. J Pharmacol Toxicol Methods 81:15–20. https://doi.org/10.1016/j.vascn.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  79. Nickel A, Loffler J, Maack C (2013) Myocardial energetics in heart failure. Basic Res Cardiol 108(4):358. https://doi.org/10.1007/s00395-013-0358-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the German Cardiac Society (DGK) for supporting our working group (AG 18), in particular for granting its auspices for the AG 18 ion channel symposium. We would also like to express our gratitude to Maren Wehner for her excellent assistance with the organization of the “Göttingen Channels 2017” symposium. The authors’ work is supported by the German Center for Cardiovascular Research (DZHK), the Deutsche Forschungsgemeinschaft (VO 1568/3-1, IRTG1816 RP12, SFB1002 TPA13) and the Else-Kröner-Fresenius Stiftung (EKFS 2016_A20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Voigt MD.

Ethics declarations

Conflict of interest

N. Voigt, F. Mason and D. Thomas declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voigt, N., Mason, F. & Thomas, D. Report on the Ion Channel Symposium. Herzschr Elektrophys 29, 4–13 (2018). https://doi.org/10.1007/s00399-017-0549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-017-0549-4

Keywords

Schlüsselwörter

Navigation