Advertisement

Verbesserung der linksventrikulären Kontraktilität durch Stimulation in der absoluten Refraktärperiode –

Cardiac Contractility Modulation (CCM)
  • Martin SeifertEmail author
  • Jana Hoffmann
  • Jürgen Meyhöfer
  • Christian Butter
Article

Zusammenfassung

Die Cardiac Contractility Modulation (CCM) ist eine neue Therapie für Patienten mit einer schweren therapierefraktären systolischen Herzinsuffizienz, unabhängig von der Breite des QRS-Komplexes unter optimaler medikamentöser Behandlung. Anders als bei der kardialen Resynchronisation (CRT), die sich bei der Behandlung der schweren Herzinsuffizienz mit QRS-Verbreiterung und ventrikulärer Asynchronie etabliert hat, kann CCM die myokardiale Kontraktilität steigern, ohne dass eine Steigerung des myokardialen Sauerstoffverbrauchs resultiert. Dies geschieht durch die Abgabe von elektrischen Impulsen während der absoluten Refraktärperiode des Myokards, ohne dass es zur Auslösung eines Aktionspotenzials kommt. Neben tierexperimentellen Studien gelang der Nachweis für einen sicheren und anhaltenden Therapieeffekt in multizentrischen Studien an herzinsuffizienten Patienten. Dabei konnten sowohl invasiv gemessene Parameter wie die dP/dt als auch die linksventrikuläre Funktion, die 6-Minuten-Gehstrecke und die maximale Sauerstoffaufnahme gesteigert werden. Ursächlich ist u. a. eine Normalisierung der pathologischen Veränderung der myokardialen Genexpression. Wir beschreiben die spezifischen Voraussetzungen und besonderen technischen Aspekte der CCM in der klinischen Anwendung.

Schlüsselwörter

Kardiale Kontraktilitätssteigerung durch Stimulation Gerätetherapie für Herzinsuffizienz schmaler QRS-Komplex 

Improving left ventricular contractility by stimulation during the absolute refractory period – Cardiac contractility modulation (CCM)

Abstract

Cardiac contractility modulation (CCM) is a treatment option for patients with systolic ventricular dysfunction, independent of QRS duration, moderate to severe systolic heart failure and symptoms despite optimal medical therapy. In contrast to cardiac resynchronization therapy (CRT) which has been an established therapy in patients with wide QRS and ventricular asynchrony, CCM can enhance cardiac contractility in patients independent of QRS duration. Whereas inotropic drugs increase oxygen demand, CCM works without additional myocardial oxygen need and without reference to asynchrony. Non-excitatory signals applied during the absolute refractory period have been shown to enhance the strength of left ventricular contraction in animals and humans with heart failure probably due to normalization of myocardial gene expression. Several multicenter studies have demonstrated safety and efficacy of CCM in patients with medically refractory heart failure. We describe the specific technical aspects and conditions in clinical application of CCM.

Key words

cardiac contractility modulation-CCM congestive heart failure and narrow QRS complex pacing during refractory period device therapy for heart failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abraham WT, Fisher WG, Smith AL, DeLurgio DB, Leon AR, Loh E et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346(24):1845–1853PubMedCrossRefGoogle Scholar
  2. 2.
    Auricchio A, Stellbrink C, Butter C, Sack S, Vogt J, Misier AR et al (2003) Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol 42(12):2109–2116PubMedCrossRefGoogle Scholar
  3. 3.
    Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R et al (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352(3):225–237PubMedCrossRefGoogle Scholar
  4. 4.
    Borggrefe MM, Lawo T, Butter C, Schmidinger H, Lunati M, Pieske B et al (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29(8):1019–1028PubMedCrossRefGoogle Scholar
  5. 5.
    Breithardt OA, Stellbrink C, Kramer AP, Sinha AM, Franke A, Salo R et al (2002) Echocardiographic quantification of left ventricular asynchrony predicts an acute hemodynamic benefit of cardiac resynchronization therapy. J Am Coll Cardiol 40(3):536–545PubMedCrossRefGoogle Scholar
  6. 6.
    Brunckhorst CB, Shemer I, Mika Y, Ben-Haim SA, Burkhoff D (2006) Cardiac contractility modulation by non-excitatory currents: studies in isolated cardiac muscle. Eur J Heart Fail 8(1):7–15PubMedCrossRefGoogle Scholar
  7. 7.
    Burkhoff D, Ben-Haim SA (2005) Nonexcitatory electrical signals for enhancing ventricular contractility: rationale and initial investigations of an experimental treatment for heart failure. Am J Physiol Heart Circ Physiol 288(6):H2550–H2556PubMedCrossRefGoogle Scholar
  8. 8.
    Burkhoff D, Shemer I, Felzen B, Shimizu J, Mika Y, Dickstein M et al (2001) Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail Rev 6(1):27–34PubMedCrossRefGoogle Scholar
  9. 9.
    Butter C, Meyhofer J, Seifert M, Neuss M, Minden HH (2007) First use of cardiac contractility modulation (CCM) in a patient failing CRT therapy: clinical and technical aspects of combined therapies. Eur J Heart Fail 9(9):955–958PubMedCrossRefGoogle Scholar
  10. 10.
    Butter C, Rastogi S, Minden HH, Meyhofer J, Burkhoff D, Sabbah HN (2008) Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure. J Am Coll Cardiol 51(18):1784–1789PubMedCrossRefGoogle Scholar
  11. 11.
    Butter C, Wellnhofer E, Schlegl M, Winbeck G, Fleck E, Sabbah HN (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13(2):137–142PubMedCrossRefGoogle Scholar
  12. 12.
    Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C et al (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344(12):873–880PubMedCrossRefGoogle Scholar
  13. 13.
    Cleland JG, Ghosh J, Freemantle N, Kaye GC, Nasir M, Clark AL et al (2004) Clinical trials update and cumulative meta-analyses from the American College of Cardiology: WATCH, SCD-HeFT, DINAMIT, CASINO, INSPIRE, STRATUS-US, RIO-Lipids and cardiac resynchronisation therapy in heart failure. Eur J Heart Fail 6(4):501–508PubMedCrossRefGoogle Scholar
  14. 14.
    Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB et al (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276(5313):800–806PubMedCrossRefGoogle Scholar
  15. 15.
    Haghighi K, Gregory KN, Kranias EG (2004) Sarcoplasmic reticulum Ca-ATPase-phospholamban interactions and dilated cardiomyopathy. Biochem Biophys Res Commun 322(4):1214–1222PubMedCrossRefGoogle Scholar
  16. 16.
    Heerdt PM, Holmes JW, Cai B, Barbone A, Madigan JD, Reiken S et al (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102(22):2713–2719PubMedGoogle Scholar
  17. 17.
    Imai M, Rastogi S, Gupta RC, Mishra S, Sharov VG, Stanley WC et al (2007) Therapy with cardiac contractility modulation electrical signals improves left ventricular function and remodeling in dogs with chronic heart failure. J Am Coll Cardiol 49(21):2120–2128PubMedCrossRefGoogle Scholar
  18. 18.
    Lawo T, Borggrefe M, Butter C, Hindricks G, Schmidinger H, Mika Y et al (2005) Electrical signals applied during the absolute refractory period: an investigational treatment for advanced heart failure in patients with normal QRS duration. J Am Coll Cardiol 46(12):2229–2236PubMedCrossRefGoogle Scholar
  19. 19.
    Marrouche NF, Pavia SV, Zhuang S, Kim YJ, Tabata T, Wallick D et al (2002) Nonexcitatory stimulus delivery improves left ventricular function in hearts with left bundle branch block. J Cardiovasc Electrophysiol 13 (7):691–695PubMedCrossRefGoogle Scholar
  20. 20.
    Mishra S, Gupta RC, Tiwari N, Sharov VG, Sabbah HN (2002) Molecular mechanisms of reduced sarcoplasmic reticulum Ca(2+) uptake in human failing left ventricular myocardium. J Heart Lung Transplant 21(3):366–373PubMedCrossRefGoogle Scholar
  21. 21.
    Mohri S, He KL, Dickstein M, Mika Y, Shimizu J, Shemer I et al (2002) Cardiac contractility modulation by electric currents applied during the refractory period. Am J Physiol Heart Circ Physiol 282(5):H1642–H1647PubMedGoogle Scholar
  22. 22.
    Mohri S, Shimizu J, Mika Y, Shemer I, Wang J, Ben-Haim S et al (2003) Electric currents applied during refractory period enhance contractility and systolic calcium in the ferret heart. Am J Physiol Heart Circ Physiol 284(4):H1119–H1123PubMedGoogle Scholar
  23. 23.
    Morita H, Suzuki G, Haddad W, Mika Y, Tanhehco EJ, Sharov VG et al (2003) Cardiac contractility modulation with nonexcitatory electric signals improves left ventricular function in dogs with chronic heart failure. J Card Fail 9(1):69–75PubMedCrossRefGoogle Scholar
  24. 24.
    Morita H, Suzuki G, Haddad W, Mika Y, Tanhehco EJ, Goldstein S et al (2004) Long-term effects of non-excitatory cardiac contractility modulation electric signals on the progression of heart failure in dogs. Eur J Heart Fail 6(2):145–150PubMedCrossRefGoogle Scholar
  25. 25.
    Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS et al (2002) Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 346(12):877–883PubMedCrossRefGoogle Scholar
  26. 26.
    Neelagaru SB, Sanchez JE, Lau SK, Greenberg SM, Raval NY, Worley S et al (2006) Nonexcitatory, cardiac contractility modulation electrical impulses: feasibility study for advanced heart failure in patients with normal QRS duration. Heart Rhythm 3(10):1140–1147PubMedCrossRefGoogle Scholar
  27. 27.
    Pappone C, Augello G, Rosanio S, Vicedomini G, Santinelli V, Romano M et al (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427PubMedCrossRefGoogle Scholar
  28. 28.
    Reuter H (1974) Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance. Circ Res 34(5):599–605PubMedGoogle Scholar
  29. 29.
    Sandhu R, Bahler RC (2004) Prevalence of QRS prolongation in a community hospital cohort of patients with heart failure and its relation to left ventricular systolic dysfunction. Am J Cardiol 93(2):244–246PubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK (1999) Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. Am J Physiol 277 (2 Pt 2):H474–H480PubMedGoogle Scholar
  31. 31.
    Shenkman HJ, Pampati V, Khandelwal AK, McKinnon J, Nori D, Kaatz S et al (2002) Congestive heart failure and QRS duration: establishing prognosis study. Chest Aug; 122(2):528–534PubMedCrossRefGoogle Scholar
  32. 32.
    Stix G, Borggrefe M, Wolpert C, Hindricks G, Kottkamp H, Bocker D et al (2004) Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur Heart J 25(8):650–655PubMedCrossRefGoogle Scholar
  33. 33.
    Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G et al (1994) Gene expression of the cardiac Na(+)-Ca2+ exchanger in end-stage human heart failure. Circ Res 75(3):443–453PubMedGoogle Scholar
  34. 34.
    Weirich J, Antoni H (1990) Differential analysis of the frequency-dependent effects of class 1 antiarrhythmic drugs according to periodical ligand binding: implications for antiarrhythmic and proarrhythmic efficacy. J Cardiovasc Pharmacol 15(6):998–1009PubMedCrossRefGoogle Scholar

Copyright information

© Spinger 2008

Authors and Affiliations

  • Martin Seifert
    • 1
    Email author
  • Jana Hoffmann
    • 2
  • Jürgen Meyhöfer
    • 1
  • Christian Butter
    • 1
  1. 1.Heart Center Brandenburg in Bernau/Berlin, Dept. of CardiologyBernauGermany
  2. 2.Impulse DynamicsZugSwitzerland

Personalised recommendations