Skip to main content
Log in

Genetik von Vorhofflimmern: seltene Mutationen, häufige Genvarianten und klinische Relevanz?

Genetics of Atrial Fibrillation: rare mutations, common variants and clinical relevance?

  • BEITRAG ZUM THEMENSCHWERPUNKT
  • Published:
Herzschrittmachertherapie & Elektrophysiologie Aims and scope Submit manuscript

Summary

Atrial fibrillation (AF) is considered the, by far, the most common arrhythmia of man, affecting millions of patients worldwide. The high socio-economic relevance is due to several severe complications and therefore requires profound scientific research in the field of etiology and treatment options. Atrial fibrillation typically occurs in the older patient who often suffers from a number of underlying diseases that act as predisposing factors. That genetics contribute strongly to this rhythm disorder is therefore not evident at a first glance. However, there are a number of investigations that prove familial accumulation for lone AF. Furthermore it is remarkable that many older patients suddenly develop atrial fibrillation without underlying disease, while others remain in sinus rhythm although suffering from a series of risk factors. Considering all this, genetic interference becomes most probable.

Therefore in the recent past remarkable endeavours have been ventured to clarify the genetic basis of both lone AF and AF in the context of underlying diseases. For the former, until now four different genetic loci and three disease genes have been identified as causative. Concerning AF in the general population, mainly studies turning the spotlight on single-nucleotide polymorphisms (SNPs) have been applied. It is assumed that SNPs in disease-causing genes are distributed differentially among healthy and diseased individuals. These differences in frequency have been investigated with case-control studies. Up to now six different genes have been found to be associated with AF, including the genes for angiotensin-converting enzyme, angiotensinogen and several cardiac ion channels.

Promising new technologies, especially high-throughput SNP genotyping and the genome wide scan for new candidate genes using chip arrays capable of genotyping up to 500 000 SNPs at a time, will multiply the speed to achieve new results. With that the possibility, approaches to optimize existing therapies and to open up new pathways to treat AF.

Zusammenfassung

Vorhofflimmern (VHF oder atrial fibrillation, AF) ist die häufigste Herzrhythmusstörung des Menschen mit ca. 600 Mio. Betroffenen weltweit. Vor allem das deutlich erhöhte Schlaganfallrisiko und die deutliche erhöhte Prävalenz im Alter verleihen dieser Herzrhythmusstörung auch ein hohes sozioökonomisches Gewicht. VHF ist überwiegend eine Erkrankung des älteren Menschen. Betroffene weisen meist einen oder mehrere bekannte prädisponierende Faktoren auf. Deshalb drängt sich die Annahme zunächst nicht auf, es handle sich um eine ursächlich stark durch die Genetik beeinflusste Krankheit. Jedoch gibt es eine Reihe von Untersuchungen, die für idiopathisches VHF eine gesicherte familiäre Häufung nachweisen. Außerdem fällt auf, dass einerseits viele ältere Patienten plötzlich Vorhofflimmern entwickeln, ohne dass eine begünstigende Grunderkrankung vorliegt, andererseits manche im Sinusrhythmus bleiben, obwohl eine Vielzahl von Risikofaktoren vorliegt. Auch dies sind mögliche Hinweise auf genetisch prädisponierende Komponenten.

In der jüngeren Vergangenheit wurden große Anstrengungen unternommen, sowohl die genetischen Grundlagen des seltenen idiopathischen, als auch des sehr viel häufigeren sekundären Vorhofflimmern aufzuklären. Für erstere konnten bisher vier verschiedene Genloci und drei konkrete Gene als Erkrankungsursache identifiziert werden. Zur Erforschung von sekundärem VHF in der Allgemeinbevölkerung dienten bisher vor allem Studien an sog. single-nucleotide-polymorphisms (SNPs). Dabei wird angenommen, dass SNPs in Kandidaten-Genen bei Betroffenen und Gesunden unterschiedlich häufig sind. Diese Häufigkeitsunterschiede wurden in Fall-Kontroll-Studien verglichen. Dabei fand man bis dato sechs verschiedene Gene, die mit der Rhythmusstörung assoziiert sind, darunter die Gene für Angiotensin-Converting-Enzym, Angiotensinogen und verschiedene Ionenkanäle des Herzens.

Vielversprechende neue Techniken, insbesondere die Hochdurchsatz-Genotypisierung von SNPs mittels Chip-Arrays, die bis zu 500 000 SNPs gleichzeitig bestimmen können, ermöglichen die Suche nach neuen verantwortlichen Genen im genomweiten Maßstab. Sie werden die Geschwindigkeit, mit der neue Ergebnisse gefunden werden, vervielfachen. Damit rückt auch die Möglichkeit näher, das pathophysiologische Verständnis zu vertiefen, bestehende Therapieformen zu optimieren und neue Wege in der Therapie von Vorhofflimmern zu eröffnen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Andersen ED, Krasilnikoff PA, Overvad H (1971) Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand 60:559–564

    PubMed  CAS  Google Scholar 

  2. Angelo K, Jespersen T, Grunnet M, Nielsen MS, Klaerke DA, Olesen SP (2002) KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current. Biophys J 83:1997–2006

    Article  PubMed  CAS  Google Scholar 

  3. Barth AS, Merk S, Arnoldi E, Zwermann L, Kloos P, Gebauer M, Steinmeyer K, Bleich M, Kaab S, Hinterseer M, Kartmann H, Kreuzer E, Dugas M, Steinbeck G, Nabauer M (2005) Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: expression of a ventricular-like genomic signature. Circ Res 96:1022–1029

    Article  PubMed  CAS  Google Scholar 

  4. Bowles KR, Abraham SE, Brugada R, Zintz C, Comeaux J, Sorajja D, Tsubata S, Li H, Brandon L, Gibbs RA, Scherer SE, Bowles NE, Towbin JA (2000) Construction of a high-resolution physical map of the chromosome 10q22–q23 dilated cardiomyopathy locus and analysis of candidate genes. Genomics 67:109–127

    Article  PubMed  CAS  Google Scholar 

  5. Bowles KR, Gajarski R, Porter P, Goytia V, Bachinski L, Roberts R, Pignatelli R, Towbin JA (1996) Gene mapping of familial autosomal dominant dilated cardiomyopathy to chromosome 10q21–23. J Clin Invest 98:1355–1360

    Article  PubMed  CAS  Google Scholar 

  6. Brugada R, Tapscott T, Czernuszewicz GZ, Marian AJ, Iglesias A, Mont L, Brugada J, Girona J, Domingo A, Bachinski LL, Roberts R (1997) Identification of a genetic locus for familial atrial fibrillation. N Engl J Med 336:905–911

    Article  PubMed  CAS  Google Scholar 

  7. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY, Jin HW, Sun H, Su XY, Zhuang QN, Yang YQ, Li YB, Liu Y, Xu HJ, Li XF, Ma N, Mou CP, Chen Z, Barhanin J, Huang W (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254

    Article  PubMed  CAS  Google Scholar 

  8. Darbar D, Herron KJ, Ballew JD, Jahangir A, Gersh BJ, Shen WK, Hammill SC, Packer DL, Olson TM (2003) Familial atrial fibrillation is a genetically heterogeneous disorder. J Am Coll Cardiol 41:2185–2192

    Article  PubMed  Google Scholar 

  9. Ehrlich JR, Zicha S, Coutu P, Hebert TE, Nattel S (2005) Atrial fibrillation-associated minK38G/S polymorphism modulates delayed rectifier current and membrane localization. Cardiovasc Res 67:520–528

    Article  PubMed  CAS  Google Scholar 

  10. Ellinor PT, Moore RK, Patton KK, Ruskin JN, Pollak MR, MacRae CA (2004) Mutations in the long QT gene, KCNQ1, are an uncommon cause of atrial fibrillation. Heart 90:1487–1488

    Article  PubMed  CAS  Google Scholar 

  11. Ellinor PT, Shin JT, Moore RK, Yoerger DM, MacRae CA (2003) Locus for atrial fibrillation maps to chromosome 6q14-16. Circulation 107:2880–2883

    Article  PubMed  Google Scholar 

  12. Fazekas T, Liszkai G, Bielik H, Luderitz B (2003) Zur Geschichte des Vorhofflimmerns. Z Kardiol 92:122–127

    Article  PubMed  CAS  Google Scholar 

  13. Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG (1995) Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med 155:469–473

    Article  PubMed  CAS  Google Scholar 

  14. Firouzi M, Ramanna H, Kok B, Jongsma HJ, Koeleman BP, Doevendans PA, Groenewegen WA, Hauer RN (2004) Association of human connexin40 gene polymorphisms with atrial vulnerability as a risk factor for idiopathic atrial fibrillation. Circ Res 95:e29–e33

    Article  PubMed  CAS  Google Scholar 

  15. Fox CS, Parise H, D’Agostino RB, Sr., Lloyd-Jones DM, Vasan RS, Wang TJ, Levy D, Wolf PA, Benjamin EJ (2004) Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 291:2851–2855

    Article  PubMed  CAS  Google Scholar 

  16. Gaudino M, Andreotti F, Zamparelli R, Di Castelnuovo A, Nasso G, Burzotta F, Iacoviello L, Donati MB, Schiavello R, Maseri A, Possati G (2003) The -174G/C interleukin-6 polymorphism influences postoperative interleukin-6 levels and postoperative atrial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation 108(Suppl 1):II195–II199

    Article  PubMed  CAS  Google Scholar 

  17. Gensini F, Padeletti L, Fatini C, Sticchi E, Gensini GF, Michelucci A (2003) Angiotensin-converting enzyme and endothelial nitric oxide synthase polymorphisms in patients with atrial fibrillation. Pacing Clin Electrophysiol 26:295–298

    Article  PubMed  Google Scholar 

  18. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE (2001) Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 285:2370–2375

    Article  PubMed  CAS  Google Scholar 

  19. Grunnet M, Jespersen T, Rasmussen HB, Ljungstrom T, Jorgensen NK, Olesen SP, Klaerke DA (2002) KCNE4 is an inhibitory subunit to the KCNQ1 channel. J Physiol 542:119–130

    Article  PubMed  CAS  Google Scholar 

  20. Hong K, Piper DR, Diaz-Valdecantos A, Brugada J, Oliva A, Burashnikov E, Santos-de-Soto J, Grueso-Montero J, Diaz-Enfante E, Brugada P, Sachse F, Sanguinetti MC, Brugada R (2005) De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero. Cardiovasc Res 68:433–440

    Article  PubMed  CAS  Google Scholar 

  21. Krahn AD, Manfreda J, Tate RB, Mathewson FA, Cuddy TE (1995) The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Follow-Up Study. Am J Med 98:476–484

    Article  PubMed  CAS  Google Scholar 

  22. Lai LP, Su MJ, Yeh HM, Lin JL, Chiang FT, Hwang JJ, Hsu KL, Tseng CD, Lien WP, Tseng YZ, Huang SK (2002) Association of the human minK gene 38G allele with atrial fibrillation: evidence of possible genetic control on the pathogenesis of atrial fibrillation. Am Heart J 144:485–490

    Article  PubMed  CAS  Google Scholar 

  23. Li J, McLerie M, Lopatin AN (2004) Transgenic upregulation of IK1 in the mouse heart leads to multiple abnormalities of cardiac excitability. Am J Physiol Heart Circ Physiol 287:H2790–H2802

    Article  PubMed  CAS  Google Scholar 

  24. Murgatroyd FD, Camm AJ (1993) Atrial arrhythmias. Lancet 341:1317–1322

    Article  PubMed  CAS  Google Scholar 

  25. Oberti C, Wang L, Li L, Dong J, Rao S, Du W, Wang Q (2004) Genome-wide linkage scan identifies a novel genetic locus on chromosome 5p13 for neonatal atrial fibrillation associated with sudden death and variable cardiomyopathy. Circulation 110:3753–3759

    Article  PubMed  CAS  Google Scholar 

  26. Pfeufer A, Jalilzadeh S, Perz S, Mueller JC, Hinterseer M, Illig T, Akyol M, Huth C, Schopfer-Wendels A, Kuch B, Steinbeck G, Holle R, Nabauer M, Wichmann HE, Meitinger T, Kaab S (2005) Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ Res 96:693–701

    Article  PubMed  CAS  Google Scholar 

  27. Ravn LS, Hofman-Bang J, Dixen U, Larsen SO, Jensen G, Haunso S, Svendsen JH, Christiansen M (2005) Relation of 97T polymorphism in KCNE5 to risk of atrial fibrillation. Am J Cardiol 96:405–407

    Article  PubMed  CAS  Google Scholar 

  28. Schreieck J, Dostal S, von Beckerath N, Wacker A, Flory M, Weyerbrock S, Koch W, Schomig A, Schmitt C (2004) C825T polymorphism of the G-protein beta3 subunit gene and atrial fibrillation: association of the TT genotype with a reduced risk for atrial fibrillation. Am Heart J 148:545–550

    Article  PubMed  CAS  Google Scholar 

  29. Sylvius N, Tesson F, Gayet C, Charron P, Benaiche A, Peuchmaurd M, Duboscq-Bidot L, Feingold J, Beckmann JS, Bouchier C, Komajda M (2001) A new locus for autosomal dominant dilated cardiomyopathy identified on chromosome 6q12–q16. Am J Hum Genet 68:241–246

    Article  PubMed  CAS  Google Scholar 

  30. Tsai CT, Lai LP, Lin JL, Chiang FT, Hwang JJ, Ritchie MD, Moore JH, Hsu KL, Tseng CD, Liau CS, Tseng YZ (2004) Renin-angiotensin system gene polymorphisms and atrial fibrillation. Circulation 109:1640–1646

    Article  PubMed  CAS  Google Scholar 

  31. Tsuboi M, Hisatome I, Morisaki T, Tanaka M, Tomikura Y, Takeda S, Shimoyama M, Ohtahara A, Ogino K, Igawa O, Shigemasa C, Ohgi S, Nanba E (2001) Mitochondrial DNA deletion associated with the reduction of adenine nucleotides in human atrium and atrial fibrillation. Eur J Clin Invest 31:489–496

    Article  PubMed  CAS  Google Scholar 

  32. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, Shen J, Timothy KW, Vincent GM, de Jager T, Schwartz PJ, Toubin JA, Moss AJ, Atkinson DL, Landes GM, Connors TD, Keating MT (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23

    Article  PubMed  Google Scholar 

  33. Wolff L (1943) Familia auricular atrial fibrillation. N Engl J Med 229:396–397

    Article  Google Scholar 

  34. Xia M, Jin Q, Bendahhou S, He Y, Larroque MM, Chen Y, Zhou Q, Yang Y, Liu Y, Liu B, Zhu Q, Zhou Y, Lin J, Liang B, Li L, Dong X, Pan Z, Wang R, Wan H, Qiu W, Xu W, Eurlings P, Barhanin J, Chen Y (2005) A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun 332:1012–1019

    Article  PubMed  CAS  Google Scholar 

  35. Yamashita T, Hayami N, Ajiki K, Oikawa N, Sezaki K, Inoue M, Omata M, Murakawa Y (1997) Is ACE gene polymorphism associated with lone atrial fibrillation? Jpn Heart J 38:637–641

    PubMed  CAS  Google Scholar 

  36. Yang Y, Xia M, Jin Q, Bendahhou S, Shi J, Chen Y, Liang B, Lin J, Liu Y, Liu B, Zhou Q, Zhang D, Wang R, Ma N, Su X, Niu K, Pei Y, Xu W, Chen Z, Wan H, Cui J, Barhanin J, Chen Y (2004) Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet 75:899–905

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kääb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinner, M.F., Pfeufer, A. & Kääb, S. Genetik von Vorhofflimmern: seltene Mutationen, häufige Genvarianten und klinische Relevanz?. Herzschr. Elektrophys. 17, 95–105 (2006). https://doi.org/10.1007/s00399-006-0516-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-006-0516-y

Key words

Schlüsselwörter

Navigation