Skip to main content
Log in

Neue Antiarrhythmika in der Therapie des Vorhofflimmerns

II. Nicht-Ionenkanalblocker

New antiarrhythmic drugs for therapy of atrial fibrillation: II. Non-ion channel blockers

  • BEITRAG ZUM THEMENSCHWERPUNKT
  • Published:
Herzschrittmachertherapie & Elektrophysiologie Aims and scope Submit manuscript

Summary

The therapeutic approach to atrial fibrillation is difficult and challenging. The effect of “classical” antiarrhythmic agents is based on their inhibitory effects on various ion channels. However, therapeutic benefit of these agents is often limited. The primary goal of this article is to discuss new therapeutic approaches using non-ion channel blocking drugs in the treatment of atrial fibrillation. Some of the substances discussed in this article have been used already in the clinical practice. Others, for example gentherapeutic approaches, are still in the experimental state. In contrast to ion channel blocking agents their efficacy is based on the suppression of structural remodeling. Hence, it can be assumed that due to these effects they may also be beneficial in the primary prevention of atrial fibrillation.

Zusammenfassung

Die Behandlung des Vorhofflimmerns (VHF) ist schwierig und für den behandelnden Arzt eine Herausforderung. Die medikamentöse Therapie mit den „klassischen“ ionenkanalblockierenden Substanzen ist in der Effektivität limitiert und birgt insbesondere das Risiko der Proarrhythmie. Ziel dieses Artikels ist es, alternative Behandlungsstrategien mit „Nicht-Ionenkanalblockern“ aufzuzeigen, welche zum Teil schon Einzug in den klinischen Alltag gefunden haben und zum Teil, wie einige gentherapeutische Ansätze, noch im experimentellen Stadium sind. Anders als klassische Antiarrhythmika besteht ihr Wirkprinzip vor allem in der Beeinflussung des strukturellen Remodeling der Vorhöfe. Daher kommt ihnen auch eine Bedeutung im Rahmen der Primärprävention des VHF zu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Berk BC (1998) Angiotensin II receptors and angiotensin II-stimulated signal transduction. Heart Failure Rev 3:87–99

    Article  CAS  Google Scholar 

  2. Brand FN, Abbott RD, Kannel WB, Wolf PA (1985) Characteristics and prognosis of lone atrial fibrillation: 30 years follow-up in the Framingham Study. JAMA 254:3449–3453

    Article  PubMed  CAS  Google Scholar 

  3. Bukowska A, Lendeckel U, Hirte D, Wolke C, Striggow F, Rohnert P, Huth C, Klein HU, Goette A (2006) Activation of the calcineurin signaling pathway induces atrial hypertrophy during atrial fibrillation. J Cell Mol Life Sci 63:333–342

    Article  CAS  Google Scholar 

  4. Cai H, Li Z, Goette A, Mera F, Honeycutt C, Feterik K, Wilcox JN, Dudley SC Jr, Harrison DG, Langberg JJ (2002) Downregulation of nitric oxide synthase expression and nitric oxide production in atrial fibrillation: potential mechanisms for atrial thrombosis and stroke. Circulation 106:2854–2858

    Article  PubMed  CAS  Google Scholar 

  5. Carnes CA, Chung MK, Nakayama T, Nakayama H, Baliga RS, Piao S, Kanderian A, Pavia S, Hamlin RL, McCarthy PM, Bauer JA, Van Wagoner DR (2001) Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circulation Res 89:e32–e38

    PubMed  CAS  Google Scholar 

  6. Christ T, Boknik P, Wöhrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D (2004) L-Type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases. Circulation 110:2651–2657

    Article  PubMed  CAS  Google Scholar 

  7. Francis GS (2000) ACE inhibition in cardiovascular diseases. N Engl J Med 342:201–202

    Article  PubMed  CAS  Google Scholar 

  8. Furberg CD, Psaty BM, Manolio TA, Gardin JM, Smith VE, Rautaharju PM (1994) Prevalence of atrial fibrillation in elderly subjects. Am J Cardiol 74:236–241

    Article  PubMed  CAS  Google Scholar 

  9. Gensini F, Padeletti L, Fatini C, Sticchi E, Gensini GF, Michelucci A (2003) Angiotensin-converting enzyme and endothelial nitric oxide synthase polymorphisms in patients with atrial fibrillation. Pacing Clin Electrophysiol 26:295–298

    Article  PubMed  Google Scholar 

  10. Goette A, Lendeckel U (2006) Morphologisches Remodeling bei Vorhofflimmern. Herz 31 (im Druck)

  11. Goette A, Honeycutt C, Langberg JJ (1996) Electrical remodeling in atrial fibrillation: time course and mechanisms. Circulation 94:2968–2974

    PubMed  CAS  Google Scholar 

  12. Goette A, Staack T, Arndt M, Röcken C, Geller C, Huth C, Ansorge S, Klein HU, Lendeckel U (2000) Increased expression of extracellular-signal regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol 35:1669–1677

    Article  PubMed  CAS  Google Scholar 

  13. Hart RG, Halperin JL (2001) Atrial fibrillation and stroke: concepts and controversies. Stroke 32:803–808

    PubMed  CAS  Google Scholar 

  14. Hove-Madsen L, Llach A, Bayes-Genis A, Roura S, Rodriguez Font E, Aris A, Cinca J (2004) Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation 110(11):1358–1363

    Article  PubMed  CAS  Google Scholar 

  15. Kikuchi K, McDonald AD, Sasano T, Donahue JK (2005) Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation 111:264–270

    Article  PubMed  CAS  Google Scholar 

  16. Kim YM, Zhang YH, Guzik TJ, Kattach H, Pillai R, Channon KM, Casadei B (2003) A myocardial nox2 containing NADPH oxidase contributes to oxidative stress in human atrial fibrillation. Circulation 108(Suppl):IV-45 (abstract)

    Article  Google Scholar 

  17. Kumagai K, Nakashima H, Gondo N, Saku K (2003) Antiarrhythmic effects of JTV-519, a novel cardioprotective drug, on atrial fibrillation/flutter in a canine sterile pericarditis model. J Cardiovasc Electrophysiol 14:880–884

    Article  PubMed  Google Scholar 

  18. Kizana E, Ginn SL, Allen DG, Ross DL, Alexander IE (2005) Fibroblasts can be genetically modified to produce excitable cells capable of electrical coupling. Circulation 111:394–398

    Article  PubMed  Google Scholar 

  19. Li D, Fareh S, Leung TK, Nattel S (1999) Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100:87–95

    PubMed  CAS  Google Scholar 

  20. Li D, Shinagawa K, Pang L, Leung TK, Cardin S, Wang Z, Nattel S (2001) Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation 104:2608–2614

    PubMed  CAS  Google Scholar 

  21. Madrid AH, Bueno MG, Rebollo JM, Marin I, Pena G, Bernal E, Rodriguez A, Cano L, Cano JM, Cabeza P, Moro C (2002) Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study. Circulation 106:331–336

    Article  PubMed  CAS  Google Scholar 

  22. Matsumoto T, Wada A, Tsutamoto T, Ohnishi M, Isono T, Kinoshita M (2003) Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure. Circulation 107:2555–2558

    Article  PubMed  Google Scholar 

  23. Mihm MJ, Yu F, Carnes CA, Reiser PJ, McCarthy PM, Van Wagoner DR, Bauer JA (2001) Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation 104:174–180

    PubMed  CAS  Google Scholar 

  24. Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226

    Article  PubMed  CAS  Google Scholar 

  25. Shiroshita-Takeshita A, Schram G, Lavoie J, Nattel S (2004) Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation 110:2313–2319

    Article  PubMed  CAS  Google Scholar 

  26. Shiroshita-Takeshita A, Brundel BJ, Lavoie J, Nattel S (2006) Prednisone prevents atrial fibrillation promotion by atrial tachycardia remodeling in dogs. Cardiovasc Res 69(4):865–875

    Article  PubMed  CAS  Google Scholar 

  27. Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1990) Angiotensin II-forming pathways in normal and failing hearts. Circ Res 66:883–890

    PubMed  CAS  Google Scholar 

  28. Vest JA, Wehrens XH, Reiken SR, Lehnart SE, Dobrev D, Chandra P, Danilo P, Ravens U, Rosen MR, Marks AR (2005) Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111(16):2025–2032

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Goette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammwöhner, M., D’Alessandro, A., Dobrev, D. et al. Neue Antiarrhythmika in der Therapie des Vorhofflimmerns. Herzschr. Elektrophys. 17, 73–80 (2006). https://doi.org/10.1007/s00399-006-0513-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-006-0513-1

Key words

Schlüsselwörter

Navigation