Skip to main content
Log in

Neue Antiarrhythmika in der Therapie des Vorhofflimmerns

I. Ionenkanalblocker

New antiarrhythmic drugs for therapy of atrial fibrillation: I. Ion channel blockers

  • BEITRAG ZUM THEMENSCHWERPUNKT
  • Published:
Herzschrittmachertherapie & Elektrophysiologie Aims and scope Submit manuscript

Summary

During the last ten years we have made substantial progress in our understanding of the underlying mechanisms of atrial fibrillation. The high rate associated alterations in electrical and structural properties of the atria, referred to as atrial remodeling, promote the progression of atrial fibrillation. The development of new therapeutic approaches addresses three different directions: (i) prevention of atrial remodeling, especially of structural remodeling; (ii) increase of long-term efficacy of currently used drugs and improvement of their side-effect profile; and (iii) design of atria- and pathology-specific antiarrhythmic drugs without concomitant proarrhythmic effects in the ventricles. The current review outlines the pathophysiology of atrial fibrillation and focuses on electrical remodeling. The properties of new antiarrhythmic drugs for atrial fibrillation are discussed in detail.

Zusammenfassung

Die vergangenen zehn Jahre haben einen rasanten Zuwachs in unserem Verständnis von den Mechanismen, die dem Vorhofflimmern zugrunde liegen, gebracht. Nach dem Einsetzen von Vorhofflimmern treten bereits innerhalb kurzer Zeit elektrophysiologische und strukturelle Veränderungen (Remodeling) auf, die die Progredienz dieser Rhythmusstörung maßgeblich verstärken. Die Entwicklung neuer Therapieansätze verfolgt drei Ziele, nämlich 1. Verhinderung von Remodeling, insbesondere von strukturellem Remodeling, 2. Verbesserung von zugelassenen Antiarrhythmika hinsichtlich Wirksamkeit und Nebenwirkungsprofil, und 3. Entwicklung von Vorhof- bzw. Pathologie-selektiven Antiarrhythmika, um ventrikuläre proarrhythmische Effekte zu vermeiden. In der vorliegenden Übersicht werden die Pathophysiologie und das elektrische Remodeling bei Vorhofflimmern erörtert. Nachfolgend werden die Eigenschaften neuer, speziell für die Therapie des Vorhofflimmerns entwickelter antiarrhythmischer Substanzen im Einzelnen diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Ai X, Pogwizd SM (2004) Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54–63

    Article  PubMed  CAS  Google Scholar 

  2. Al-Dashti R, Sami M (2001) Dofetilide: a new class III antiarrhythmic agent. Can J Cardiol 17(1):63–67

    PubMed  CAS  Google Scholar 

  3. Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54:230–246

    Article  PubMed  CAS  Google Scholar 

  4. Amos GJ, Wettwer E, Metzger F, Li Q, Himmel HM, Ravens U (1996) Differences between outward currents of human atrial and subepicardial ventricular myocytes. J Physiol 491:31–50

    PubMed  CAS  Google Scholar 

  5. Arndt M, Lendeckel U, Rocken C, Nepple K, Wolke C, Spiess A, Huth C, Ansorge S, Klein HU, Goette A (2002) Altered expression of ADAMs (A Disintegrin And Metalloproteinase) in fibrillating human atria. Circulation 105):720–725

    Article  PubMed  CAS  Google Scholar 

  6. Beatch GN, Shinagawa K, Johnson B, Jung G, Plouvier B, Zolotoy A, Ezrin AM, Walker MJA, Nattel S (2002) RSD1235 selectively prolongs atrial refractoriness and terminates AF in dogs with electrically remodeled atria (abstr). Pacing Clin Electrophysiol 25:698

    Google Scholar 

  7. Blaauw Y, Gögelein H, Tieleman RG, van Hunnik A, Schotten U, Allessie MA (2004) “Early” class III drugs for the treatment of atrial fibrillation: efficacy and atrial selectivity of AVE0118 in remodeled atria of the goat. Circulation 110:1717–1724

    Article  PubMed  CAS  Google Scholar 

  8. Bode F, Sachs F, Franz MR (2001) Tarantula peptide inhibits atrial fibrillation. Nature 409:35–36

    Article  PubMed  CAS  Google Scholar 

  9. Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kuhlkamp V (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 144:121–131

    Article  Google Scholar 

  10. Carlsson L, Chartier D, Nattel S (2006) Characterization of the in vivo and in vitro electrophysiological effects of the novel antiarrhythmic agent AZD7009 in atrial and ventricular tissue of the dog. J Cardiovasc Pharmacol 47:123–132

    Article  PubMed  CAS  Google Scholar 

  11. Cha TJ, Ehrlich JR, Chartier D, Qi XY, Xiao L, Nattel S (2006) Kir3-Based Inward Rectifier Potassium Current. Potential Role in Atrial Tachycardia Remodeling Effects on Atrial Repolarization and Arrhythmias. Circulation [Epub ahead of print]

  12. Christ T, Boknik P, Wohrl S, Wettwer E, Graf EM, Bosch RF, Knaut M, Schmitz W, Ravens U, Dobrev D (2004) L-type Ca2+ current downregulation in chronic human atrial fibrillation is associated with increased activity of protein phosphatases Circulation 110:2651–2657

    Article  PubMed  CAS  Google Scholar 

  13. Cox JL (2004) Cardiac surgery for arrhythmias. Pacing Clin Electrophysiol 27:266–282

    Article  PubMed  Google Scholar 

  14. Crijns HJGM, Van Gelder IC, Waldfridsson H et al (2005) Safety and efficacy of AZD7009 given intravenously to patients for conversion of atrial fibrillation/atrial flutter. Eur Heart J 26:506

    Google Scholar 

  15. Cropp JS, Antal EG, Talbert RL (1997) Ibutilide: a new class III antiarrhythmic agent. Pharmacotherapy 17:1–9

    PubMed  CAS  Google Scholar 

  16. Dobrev D, Graf E, Wettwer E, Himmel HM, Hala O, Doerfel C, Christ T, Schuler S, Ravens U (2001) Molecular basis of downregulation of G-proteincoupled inward rectifying K+ current (IK,ACh) in chronic human atrial fibrillation: decrease in GIRK4 mRNA correlates with reduced IK,ACh and muscarinic receptor-mediated shortening of action potentials. Circulation 104:2551–2557

    PubMed  CAS  Google Scholar 

  17. Dobrev D, Ravens U (2003) Remodeling of cardiomyocyte ion channels in human atrial fibrillation. Basic Res Cardiol 98:137–148

    PubMed  Google Scholar 

  18. Dobrev D, Friedrich A, Voigt N, Jost N, Wettwer E, Christ T, Knaut M, Ravens (2005) The G protein-gated potassium current I(K,ACh) is constitutively active in patients with chronic atrial fibrillation. Circulation 112:3697–3706

    Article  PubMed  CAS  Google Scholar 

  19. Dukes ID, Morad M (1989) Tedisamil reactivates transient outward K+ current in rat ventricular myocytes. Am J Physiol 257:H1746–H1749

    PubMed  CAS  Google Scholar 

  20. Dukes ID, Cleeman L, Morad M (1990) Tedisamil blocks the transient and the delayed rectifier K+ currents in mammalian cardiac and glial cells. J Pharmacol Exp Ther 254:560–569

    PubMed  CAS  Google Scholar 

  21. Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, Arensberg D, Baker A, Friedman L, Greene HL et al (1991) Mortality and Morbidity in patients receiving encainide, flecainide, or placebo: The Cardiac Arrhythmia Suppression Trial New Engl J Med 324:781–788

    Article  PubMed  CAS  Google Scholar 

  22. Edvardsson N, Walfridsson, Aass H et al (2005) Predominant effects on atrial versus ventricular refractoriness in man by the novel antiarrhythmic agent AZD7009. Eur Heart J 26:506

    Google Scholar 

  23. Ehrlich JR, Cha TJ, Zhang L, Chartier D, Villeneuve L, Hébert TE, Nattel S (2004) Characterization of a hyperpolarization-activated time-dependent potassium current in canine cardiomyocytes from pulmonary veins myocardial sleeves and left atrium. J Physiol 557:583–559

    Article  PubMed  CAS  Google Scholar 

  24. Faivre JF, Gout B, Bril A (1995) Tedisamil. Cardiovasc Drug Rev 13:33–55

    CAS  Google Scholar 

  25. Faivre JF, Rouanet S, Bril A (1998) Comparative effects of glibenclamide, tedisamil, dofetilide, E-4031, and BRL-32872 on protein kinase A-activated chloride current in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 31:551–557

    Article  PubMed  CAS  Google Scholar 

  26. Fedida D, Eldstrom J, Hesketh JC, Lamorgese M, Castel L, Steele DF, Van Wagoner DR (2003) Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes. Circ Res 93:744–751

    Article  PubMed  CAS  Google Scholar 

  27. Fedida D, Orth PMR, Chen JYC, Lin S, Plouvier B, Jung G, Ezrin AM, Beatch GN (2005) The mechanism of atrial antiarrhythmic action of RSD1235. J Cardiovasc Electrophysiol 16:1–12

    Article  Google Scholar 

  28. Fedida D, Orth PMR, Hesketh JC, Ezrin AM (2006) The role of late INa and antiarrhythmic drugs in EAD formation and termination in Purkinje fibers. J Cardiovasc Electrophysiol 17:S1–S8

    Article  Google Scholar 

  29. Gögelein H, Brendel J, Steinmeyer K, Strubing C, Picard N, Rampe D, Kopp K, Busch AE, Bleich M (2004) Effects of the atrial antiarrhythmic drug AVE0118 on cardiac ion channels. Naunyn Schmiedeberg’s Arch Pharmacol 370:183–192

    Google Scholar 

  30. Götte A, Staack T, Rocken C Arndt M, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U (2000 a) Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol 35:1669–1677

    Article  Google Scholar 

  31. Götte A, Arndt M, Roecken C, Spiess A, Staack T, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U (2000b) Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation 101:2678–2681

    Google Scholar 

  32. Goette A, Arndt M, Roecken C, Staack T, Bechtloff R, Reinhold, D, Huth C, Ansorge S, Klein HU, Lendeckel U (2002) Calpains and cytokines in fibrillating human atria. Am J Physiol Heart Circ Physiol 283:H264–H272

    PubMed  CAS  Google Scholar 

  33. Goldstein RN, Khrestian C, Carlsson L, Waldo AL (2004) AZ7009: A new antiarrhythmic drug with predominant effects on the atria effectively terminates and prevents reinduction of atrial fibrillation and flutter in the sterile pericarditis model. J Cardiovasc Electrophysiol 15:1444–1450

    Article  PubMed  Google Scholar 

  34. Goldstein RN, Stambler BS (2005) New antiarrhythmic drugs for prevention of atrial fibrillation. Progr Cardiovasc Dis 48:193–208

    Article  CAS  Google Scholar 

  35. Gross GJ, Castle NA (1998) Propafenone inhibition of human atrial myocyte repolarizing currents. J Mol Cell Cardiol 30:783–793

    Article  PubMed  CAS  Google Scholar 

  36. Hammwöhner M, D’Alessandro A, Dobrev D, Kirchhof P, Goette A (2006) Neue Antiarrhythmika in der Therapie des Vorhofflimmerns. II Nicht-Ionenkanalblocker. Herzschr Elektrophys 17:73–80

    Article  Google Scholar 

  37. Hancox JC, Levi AJ, Witchel HJ (1998) Time course and voltage dependence of expressed HERG current compared with native “rapid” delayed rectifier K current during the cardiac ventricular action potential. Pflugers Arch 436:843–853

    Article  PubMed  CAS  Google Scholar 

  38. Hohnloser SH, Dorian P, Straub M, Beckmann K, Kowey P (2004) Safety and efficacy of intravenously administered tedisamil for rapid conversion of recent onset atrial fibrillation or atrial flutter. J Am Coll Cardiol 44:99–104

    Article  PubMed  CAS  Google Scholar 

  39. Inomata N, Ishihara T, Akaike N (1991) Mechanisms of the anticholinergic effect of SUN 1165 in comparison with flecainide, disopyramide and quinidine in single atrial myocytes isolated from guinea-pig. Br J Pharmacol 104:1007–1111

    PubMed  CAS  Google Scholar 

  40. Jost N, Virag L, Hala O, Varro A, Thormahlen D, Papp JG (2004) Effect of the antifibrillatory compound tedisamil (KC-8857) on transmembrane currents in mammalian ventricular myocytes. Curr Med Chem 11:3219–3228

    PubMed  CAS  Google Scholar 

  41. Kang J, Chen XL, Wang H, Ji J, Cheng H, Incardona J, Reynolds W, Viviani F, Tabart M, Rampe D (2005) Discovery of a small molecule activator of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. Mol Pharmacol 67:827–836

    Article  PubMed  CAS  Google Scholar 

  42. Kathofer S, Thomas D, Karle CA (2005) The novel antiarrhythmic drug dronedarone: comparison with amiodarone. Cardiovasc Drug Rev 23:217–230

    Article  PubMed  CAS  Google Scholar 

  43. Kaumann AJ (1994) Do human atrial 5-HT4 receptors mediate arrhythmias? Trends Pharmacol Sci 15:451–455

    Article  PubMed  CAS  Google Scholar 

  44. Kirchhof P, Eckardt L, Loh P, Weber K, Fischer RJ, Seidl KH, Böcker D, Breithardt G, Haverkamp W, Borggrefe M (2002) Anterior-posterior versus anterior-lateral electrode positions for external cardioversion of atrial fibrillation: a randomised trial. Lancet 360:1275–1279

    Article  PubMed  Google Scholar 

  45. Kostin S, Klein G, Szalay Z, Hein S, Bauer EP, Schaper J (2002) Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 54:361–379

    Article  PubMed  CAS  Google Scholar 

  46. Linhart M, Nickening G, Lewalter T (2006) Elektrische und pharmakologische Frühkardioversion von Vorhofflimmern. Herzschr Elektrophys 17:81–88

    CAS  Google Scholar 

  47. Matsuda T, Takeda K, Ito M, Yamagishi R, Tamura M, Nakamura H, Tsuruoka N, Saito T, Masumiya H, Suzuki T, Iida-Tanaka N, Itokawa-Matsuda M, Yamashita T, Tsuruzoe N, Tanaka H, Shigenobu K (2005) Atria selective prolongation by NIP-142, an antiarrhythmic agent, of refractory period and action potential duration in guinea pig myocardium. J Pharmacol Sci 98:33–40

    Article  PubMed  CAS  Google Scholar 

  48. Nakano Y, Niida S, Dote K, Takenaka S, Hirao H, Miura F, Ishida M, Shingu T, Sueda T, Yoshizumi M, Chayama K (2004) Matrix metalloproteinase-9 contributes to human atrial remodeling during atrial fibrillation. J Am Coll Cardiol 43:818–825

    Article  PubMed  CAS  Google Scholar 

  49. Nattel S (2002) New ideas about atrial fibrillation 50 years on. Nature 415:219–226

    Article  PubMed  CAS  Google Scholar 

  50. Oral H, Pappone C, Cugh A, Good E, Bogun F, Pelosi F Jr, Bates ER, Lehmann MH, Vicedomini G, Augello G, Agricola E, Sala S, Santinelli V, Morady F (2006) Circumferential pulmonary vein-ablation for chronic atrial fibrillation. N Engl J Med 354:934–941

    Article  PubMed  CAS  Google Scholar 

  51. Orth PM, Hesketh JC, Mak CK, Yang Y, Lin S, Beatch GN, Ezrin AM, Fedida D (2006) RSD1235 blocks late INa and suppresses early afterdepolarizations and torsades de pointes induced by class III agents. Cardiovasc Res [Epub ahead of print]

  52. Page RL, Roden DM (2005) Drug therapy for atrial fibrillation: Where do we go from here? Nature Rev 4:899–910

    Article  CAS  Google Scholar 

  53. Persson F, Carlsson L, Duker G, Jacobson I (2005 a) Blocking characteristics of hERG, hNav1.5 and hKvLQT1/hminK after administration of the novel antiarrhythmic compound AZD7009. J Cardiovasc Electrophysiol 16:329–341

    Article  Google Scholar 

  54. Persson F, Carlsson L, Duker G, Jacobson I (2005 b) Blocking characteristics of hKv1.5 and hKv4.3/hKChIP2.2 after administration of the novel antiarrhythmic compound AZD7009. J Cardiovasc Pharmacol 46:7–17

    Article  CAS  Google Scholar 

  55. Pino R, Cerbai E, Calamai G, Alajmo F, Borgioli A, Braconi L, Cassai M, Montesi GF, Mugelli A (1998) Effect of 5-HT4 receptor stimulation on the pacemaker current I(f) in human isolated atrial myocytes. Cardiovasc Res 40:516–522

    Article  PubMed  CAS  Google Scholar 

  56. Rahme MM, Cotter B, Leistad E, Wadhwa MK, Mohabir R, Ford AP, Eglen RM, Feld GK (1999) Electrophysiological and antiarrhythmic effects of the atrial selective 5-HT4 receptor antagonist RS-100302 in experimental atrial flutter and fibrillation. Circulation 100:2010–2017

    PubMed  CAS  Google Scholar 

  57. Roy D, Talajic M, Dorian P, Connolly S, Eisenberg MJ, Green M, Kus T, Lambert J, Dubuc M, Gagne P, Nattel S, Thibault B (2000) Amiodarone to prevent recurrence of atrial fibrillation. Canadian Trial of Atrial Fibrillation Investigators. N Engl J Med 342:913–920

    Article  PubMed  CAS  Google Scholar 

  58. Roy D, Rowe BH, Steill IG, Coutu B, Phaneuf D, Lee J, Vidaillet H, Dickinson G, Grant S, Ezrin AM, Beatch GN (2004) A randomized controlled trial of RSD1235, a novel antiarrhythmic agent, in the treatment of recent onset atrial fibrillation. J Am Coll Cardiol 44:2355–2361

    Article  PubMed  CAS  Google Scholar 

  59. Salata JJ, Brooks RR (1997) Pharmacology of azimilide dihydrochloride (NE-10064), a class III antiarrhythmic agent. Cardiovasc Drug Res 15:137–156

    CAS  Google Scholar 

  60. Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96:195–215

    Article  PubMed  CAS  Google Scholar 

  61. Schultz Hansen R, Diness TG, Christ T, Demnitz J, Ravens U, Olesen SP, Grunnet M (2006) Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethylphenyl)-urea (NS1643). Mol Pharmacol 69:266–277

    Google Scholar 

  62. Singarayar S, Bursill J, Wyse K, Bauskin A, Wu W, Vandenberg J, Breit S, Campbell T (2003) Extracellular acidosis modulates drug block of Kv4.3 currents by flecainide and quinidine. J Cardiovasc Electrophysiol 14:641–650

    Article  PubMed  Google Scholar 

  63. Snyders DJ, Hondeghem LM (1990) Effects of quinidine on the sodium current of guinea pig ventricular myocytes. Evidence for a drug-associated rested state with altered kinetics. Circ Res 66:565–579

    PubMed  CAS  Google Scholar 

  64. Van Gelder IC, Hagens VE, Bosker HA, Kingma JH, Kamp O, Kingma T, Said SA, Darmanata JI, Timmermans AJ, Tijssen JG, Crijns HJ; Rate Control versus Electrical Cardioversion for Persistent Atrial Fibrillation Study Group (2002) A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med 347:1834–1840

    Article  PubMed  Google Scholar 

  65. Vest JA, Reiken SR, Wehrens XHT, Lehnard SE, Dobrev D, Chandra P, Danilo P, Ravens U, Rosen MR, Marks AR (2005) Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111:2025–2032

    Article  PubMed  CAS  Google Scholar 

  66. Wettwer E, Himmel HM, Amos GJ, Li Q, Metzger F, Ravens U (1998) Mechanism of block by tedisamil of transient outward current in human ventricular subepicardial myocytes. Br J Pharmacol 125:659–666

    Article  PubMed  CAS  Google Scholar 

  67. Wettwer E, Hala O, Christ T, Heubach JF, Dobrev D, Knaut M, Varro A, Ravens U (2004) Role of IKur in controlling action potential shape and contractility in the human atrium: influence of chronic atrial fibrillation. Circulation 110:2299–2306

    Article  PubMed  Google Scholar 

  68. Wijffels MCEF, Kirchhof CJHJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake, chronically instrumented conscious goats. Circulation 92:1954–1968

    PubMed  CAS  Google Scholar 

  69. Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EB, Kellen JC, Greene HL, Mickel MC, Dalquist JE, Corley SD; Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Investigators (2002) A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 347:1825–1833

    Article  PubMed  CAS  Google Scholar 

  70. Xu J, Cui G, Esmailian F, Plunkett M, Marelli D, Ardehali A, Odim J, Laks H, Sen L (2004) Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation 109:363–368

    Article  PubMed  CAS  Google Scholar 

  71. Yusuf A, Al-Saady N, Camm AJ (2003) 5-hydroxytryptamine and atrial fibrillation: How significant is this piece in the puzzle? J Cardiovasc Electrophysiol 14:209–214

    Article  PubMed  Google Scholar 

  72. Zareba KM (2006) Dronedarone: a new antiarrhythmic agent. Drugs Today (Barc) 42:75–86

    Article  CAS  PubMed  Google Scholar 

  73. Zellerhoff S, Götte A, Kirchhof P (2006) Antikoagulation bei Vorhofflimmern. Herzschr Elektrophys 17:89–94

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Ravens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravens, U., Wettwer, E., Schotten, U. et al. Neue Antiarrhythmika in der Therapie des Vorhofflimmerns. Herzschr. Elektrophys. 17, 64–72 (2006). https://doi.org/10.1007/s00399-006-0512-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-006-0512-2

Key words

Schlüsselwörter

Navigation