Skip to main content

Advertisement

Log in

Die Effekte der Herz-Lungen-Maschine auf das intestinale Mikrobiom und die Relation zum postoperativen SIRS

The effects of the cardiopulmonary bypass on the gut microbiome and its contribution to postoperative SIRS

  • Ausgezeichnet
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Die Herz-Lungen-Maschine (HLM) ist der Grundbaustein der Herzchirurgie. Ihre Anwendung bleibt heutzutage weiterhin bei der Mehrzahl an kardiochirurgischen Operationen unentbehrlich. Trotz ihrer fast 70-jährigen Existenz und zahlreichen technischen Designverbesserungen repräsentiert sie eine invasive Intervention in die physiologische Integrität des menschlichen Körpers. Diese Nebeneffekte zeigen sich in der Form des systemisch inflammatorischen Response-Syndroms (SIRS), das in seiner schwersten Form mit einer Inzidenz von 10–20 % in eine überschießende Immunantwort mit nahezu unkontrollierbarer hämodynamischer Instabilität münden kann und letale und komplikationsträchtige Therapieergebnisse für das kardiochirurgische Patientenkollektiv bringt. Interessanterweise sind die Veränderungen des intestinalen Mikrobioms unter HLM-Anwendung trotz ihrer fundamentalen immunregulatorischen Rolle noch nicht ausreichend untersucht worden. Unser Projekt zielt darauf ab zu identifizieren, wie sich Mikrobiom, Metagenom und Metabolom post-HLM verändern, und diese Erkenntnisse mit der Aktivierung verschiedener Inflammationsmechanismen und dem postoperativen Verlauf der Patienten zu korrelieren. Die Aufklärung eines Zusammenhangs zwischen Mikrobiomveränderung und SIRS-Mechanismen kann in innovative translationale Therapieansätze für die SIRS-Bewältigung durch Mikrobiommodulation resultieren. Darüber hinaus kann die Identifizierung von SIRS-suszeptiblen Ausgangsmikrobiomkompositionen ein Instrument zur präoperativen Risikostratifizierung bieten.

Abstract

Cardiopulmonary bypass (CPB) made cardiac surgery possible. Despite its almost 70 years of existence and countless design improvements, it still represents one of the most invasive interventions on the human body’s physiological integrity. The adverse effects of CPB present as systemic inflammatory response syndrome (SIRS), which in its most severe form with an incidence between 10% and 20% causes metabolic and immunological mayhem, accounting in many cases for uncontrollable hemodynamic, respiratory, and coagulative instability that may result in high rates of morbidity and mortality. Interestingly, the alterations of the intestinal microbiome during CPB and their role in immune regulation have not been thoroughly investigated. Our scientific efforts aim to identify compositional and metabolic shifts in the microbiome after CPB using metagenomics and metabolomics, to correlate these findings to the postoperative clinical outcomes of the patients, and to reveal a possible mechanistic link to the etiology SIRS. This could generate novel translational and therapeutic approaches for amelioration of SIRS after CPB-assisted cardiac surgery based on microbiome modulation. Furthermore, the detection of specific baseline microbiome compositions prone to SIRS susceptibility may provide a tool for risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95(12):6578–6583. https://doi.org/10.1073/pnas.95.12.6578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133. https://doi.org/10.1146/annurev.mi.31.100177.000543

    Article  CAS  PubMed  Google Scholar 

  3. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D, MetaHITConsortium (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32(8):834–841. https://doi.org/10.1038/nbt.2942

    Article  CAS  PubMed  Google Scholar 

  4. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. https://doi.org/10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Schloter M (2020) Microbiome definition re-visited: old concepts and new challenges. Microbiome 8(1):103. https://doi.org/10.1186/s40168-020-00875-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14(7):676–684. https://doi.org/10.1038/ni.2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Sci (new york Ny) 307(5717):1915–1920. https://doi.org/10.1126/science.1104816

    Article  CAS  Google Scholar 

  8. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230. https://doi.org/10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower C (2015) Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A 112(22):E2930–E2938. https://doi.org/10.1073/pnas.1423854112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zmora N, Suez J, Elinav E (2019) You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 16(1):35–56. https://doi.org/10.1038/s41575-018-0061-2

    Article  CAS  PubMed  Google Scholar 

  11. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T‑cell generation. Nature 504(7480):451–455. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379. https://doi.org/10.1056/NEJMra1600266

    Article  CAS  PubMed  Google Scholar 

  13. Wehkamp J, Frick JS (2017) Microbiome and chronic inflammatory bowel diseases. J Mol Med 95(1):21–28. https://doi.org/10.1007/s00109-016-1495-z

    Article  CAS  PubMed  Google Scholar 

  14. Albillos A, de Gottardi A, Rescigno M (2020) The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol 72(3):558–577. https://doi.org/10.1016/j.jhep.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  15. Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clément K (2021) Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology 160(2):573–599. https://doi.org/10.1053/j.gastro.2020.10.057

    Article  CAS  PubMed  Google Scholar 

  16. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Wang J (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60. https://doi.org/10.1038/nature11450

    Article  CAS  PubMed  Google Scholar 

  17. Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG (2020) The gut microbiome in neurological disorders. Lancet Neurol 19(2):179–194. https://doi.org/10.1016/S1474-4422(19)30356-4

    Article  CAS  PubMed  Google Scholar 

  18. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R (2021) The microbiome and human cancer. Sci (new york Ny) 371(6536):eabc4552. https://doi.org/10.1126/science.abc4552

    Article  CAS  Google Scholar 

  19. Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L, Vvedenskaya O, Kleiner FH, Tsvetkov D, Klug L, Costea PI, Sunagawa S, Maier L, Rakova N, Schatz V, Neubert P, Müller DN (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551(7682):585–589. https://doi.org/10.1038/nature24628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Avery EG, Bartolomaeus H, Maifeld A, Marko L, Wiig H, Wilck N, Rosshart SP, Forslund SK, Müller DN (2021) The gut microbiome in hypertension: recent advances and future perspectives. Circ Res 128(7):934–950. https://doi.org/10.1161/CIRCRESAHA.121.318065

    Article  CAS  PubMed  Google Scholar 

  21. Barrington WT, Lusis AJ (2017) Atherosclerosis: Association between the gut microbiome and atherosclerosis. Nat Rev Cardiol 14(12):699–700. https://doi.org/10.1038/nrcardio.2017.169

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sorbara MT, Pamer EG (2022) Microbiome-based therapeutics. Nat Rev Microbiol 20, 365–380. https://doi.org/10.1038/s41579-021-00667-9

    Article  CAS  PubMed  Google Scholar 

  23. Utley JR (1990) Pathophysiology of cardiopulmonary bypass: current issues. J Cardiac Surgery 5(3):177–189. https://doi.org/10.1111/j.1540-8191.1990.tb01036.x

    Article  CAS  Google Scholar 

  24. Paparella D, Yau TM, Young E (2002) Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg 21(2):232–244. https://doi.org/10.1016/s1010-7940(01)01099-5

    Article  CAS  PubMed  Google Scholar 

  25. Landis RC, Brown JR, Fitzgerald D, Likosky DS, Shore-Lesserson L, Baker RA, Hammon JW (2014) Attenuating the systemic inflammatory response to adult cardiopulmonary bypass: a critical review of the evidence base. J Extra Corpor Technol 46(3):197–211

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bronicki RA, Hall M (2016) Cardiopulmonary bypass-induced inflammatory response: pathophysiology and treatment. Pediatr Crit Care Med : A J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 17(8 Suppl 1):S272–S278. https://doi.org/10.1097/PCC.0000000000000759

    Article  Google Scholar 

  27. Warren OJ, Watret AL, de Wit KL, Alexiou C, Vincent C, Darzi AW, Athanasiou T (2009) The inflammatory response to cardiopulmonary bypass: part 2—anti-inflammatory therapeutic strategies. J Cardiothorac Vasc Anesth 23(3):384–393. https://doi.org/10.1053/j.jvca

    Article  CAS  PubMed  Google Scholar 

  28. Boston US, Slater JM, Orszulak TA, Cook DJ (2001) Hierarchy of regional oxygen delivery during cardiopulmonary bypass. Ann Thorac Surg 71(1):260–264. https://doi.org/10.1016/s0003-4975(00)01883-x

    Article  CAS  PubMed  Google Scholar 

  29. Ohri SK, Somasundaram S, Koak Y, Macpherson A, Keogh BE, Taylor KM, Menzies IS, Bjarnason I (1994) The effect of intestinal hypoperfusion on intestinal absorption and permeability during cardiopulmonary bypass. Gastroenterology 106(2):318–323. https://doi.org/10.1016/0016-5085(94)90588-6

    Article  CAS  PubMed  Google Scholar 

  30. Ohri SK, Bjarnason I, Pathi V, Somasundaram S, Bowles CT, Keogh BE, Khaghani A, Menzies I, Yacoub MH, Taylor KM (1993) Cardiopulmonary bypass impairs small intestinal transport and increases gut permeability. Ann Thorac Surg 55(5):1080–1086. https://doi.org/10.1016/0003-4975(93)90011-6

    Article  CAS  PubMed  Google Scholar 

  31. Ohri SK (1996) Systemic inflammatory response and the splanchnic bed in cardiopulmonary bypass. Perfusion 11(3):200–212. https://doi.org/10.1177/026765919601100305

    Article  CAS  PubMed  Google Scholar 

  32. Riddington DW, Venkatesh B, Boivin CM, Bonser RS, Elliott TS, Marshall T, Mountford PJ, Bion JF (1996) Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 275(13):1007–1012

    Article  CAS  PubMed  Google Scholar 

  33. Adamik B, Kübler A, Gozdzik A, Gozdzik W (2017) Prolonged cardiopulmonary bypass is a risk factor for intestinal Ischaemic damage and endotoxaemia. Heart Lung Circ 26(7):717–723. https://doi.org/10.1016/j.hlc.2016.10.012

    Article  PubMed  Google Scholar 

  34. Rimpiläinen R, Vakkala M, Rimpiläinen E, Jensen H, Rimpiläinen J, Erkinaro T, Kiviluoma K, Meriläinen S, Pokela M, Karttunen T, Juvonen T (2011) Minimized and conventional cardiopulmonary bypass damage intestinal mucosal integrity. Scand Cardiovasc J 45(4):236–246. https://doi.org/10.3109/14017431.2011.572996

    Article  PubMed  Google Scholar 

  35. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021 The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  36. Salomon J, Ericsson A, Price A, Manithody C, Murry DJ, Chhonker YS, Buchanan P, Lindsey ML, Singh AB, Jain AK (2021) Dysbiosis and intestinal barrier dysfunction in pediatric congenital heart disease is exacerbated following cardiopulmonary bypass. Jacc Basic To Transl Sci 6(4):311–327. https://doi.org/10.1016/j.jacbts.2020.12.012

    Article  Google Scholar 

  37. Derrien M, Alvarez AS, de Vos WM (2019) The gut microbiota in the first decade of life. trends Microbiol 27(12):997–1010. https://doi.org/10.1016/j.tim.2019.08.001

    Article  CAS  PubMed  Google Scholar 

  38. Aardema H, Lisotto P, Kurilshikov A, Diepeveen JRJ, Friedrich AW, Sinha B, de Smet AMGA, Harmsen HJM (2020) Marked changes in gut microbiota in cardio-surgical intensive care patients: a longitudinal cohort study. Front Cell Infect Microbiol 9:467. https://doi.org/10.3389/fcimb.2019.00467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salomon JD, Qiu H, Feng D, Owens J, Khailova L, Osorio Lujan S, Iguidbashian J, Chhonker YS, Murry DJ, Riethoven JJ, Lindsey ML, Singh AB, Davidson JA (2023) Piglet cardiopulmonary bypass induces intestinal dysbiosis and barrier dysfunction associated with systemic inflammation. Dis Model Mech 16(5):dmm49742. https://doi.org/10.1242/dmm.049742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ding W, Liu J, Zhou X, Miao Q, Zheng H, Zhou B, Dou G, Tong Y, Long Y, Su L (2020) Clinical multi-Omics study on the gut microbiota in critically ill patients after cardiovascular surgery combined with cardiopulmonary bypass with or without sepsis (MUL-GM-CSCPB study): a prospective study protocol. Front Med 7:269. https://doi.org/10.3389/fmed.2020.00269

    Article  Google Scholar 

  41. Croome KP, Kiaii B, Fox S, Quantz M, McKenzie N, Novick RJ (2009) Comparison of gastrointestinal complications in on-pump versus off-pump coronary artery bypass grafting. Can J Surgery J Can De Chir 52(2):125–128

    Google Scholar 

  42. Vujkovic-Cvijin I, Sklar J, Jiang L, Natarajan L, Knight R, Belkaid Y (2020) Host variables confound gut microbiota studies of human disease. Nature 587(7834):448–454. https://doi.org/10.1038/s41586-020-2881-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun YJ, Cao HJ, Song DD, Diao YG, Zhou J, Zhang TZ (2013) Probiotics can alleviate cardiopulmonary bypass-induced intestinal mucosa damage in rats. Dig Dis Sci 58(6):1528–1536. https://doi.org/10.1007/s10620-012-2546-0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hristian Hinkov.

Ethics declarations

Interessenkonflikt

H. Hinkov, L. Markó, T.Z. Nazari-Shafti, S. Neuber, H. Meyborg, K. Krüger, S.K. Forslund, D.N. Müller, V. Falk, M.Y. Emmert und H. Rodriguez geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Das dargestellte Projektvorhaben ist mit dem Dr. Rusche-Forschungspreis der Deutschen Stiftung für Herzforschung (DSHF) und der Deutschen Gesellschaft für Thorax‑, Herz- und Gefäßchirurgie (DGTHG) für das Jahr 2023 ausgezeichnet.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinkov, H., Markó, L., Nazari-Shafti, T.Z. et al. Die Effekte der Herz-Lungen-Maschine auf das intestinale Mikrobiom und die Relation zum postoperativen SIRS. Z Herz- Thorax- Gefäßchir 37, 315–323 (2023). https://doi.org/10.1007/s00398-023-00590-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-023-00590-6

Schlüsselwörter

Keywords

Navigation