Skip to main content

Advertisement

Log in

Stand der Technik und Durchbruch bei der kardialen Xenotransplantation

Schweineherzen als alternative Lösung des Spenderorganmangels

State of the art and breakthrough in orthotopic cardiac xenotransplantation (Nature paper 12/2018 (1))

Porcine hearts as alternative solution to lack of donor organs

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Ziel

Um terminal herzkranken Patienten, die häufig aufgrund des Spendermangels nicht die erforderliche Herztransplantation erhalten, eine mögliche Alternative zu bieten, gelang nach 25 Jahren Forschung der Münchner Arbeitsgruppe um Prof. Paolo Brenner und Prof. Bruno Reichart, gemäß einer Nature-Publikation, im erforderlichen präklinischen Modell, der sog. orthotopen Xenotransplantation von Schwein auf Pavian, der entscheidende Durchbruch.

Methoden

Dabei konnte ein konstantes, reproduzierbares Langzeitüberleben von multitransgenen (GalKO/CD46/hTM‑)Schweineherzen mit einer neuen Immunsuppression beim Empfänger auf der Basis einer CD40-Antikörper-Kostimulationsblockade erzielt werden. Zusätzlich wurde die initiale Xenotransplantatfunktion durch die Verwendung einer neuen, nichtischämischen, sauerstoffhaltigen Kaltperfusionstechnik deutlich verbessert, und dadurch wurde das Problem der „perioperativen kardialen Xenotransplantatdysfunktion“ (PCXD), eines häufigen, frühen Xenotransplantatversagens, gelöst. Schließlich wurde noch die Problematik der schnell wachsenden, jungen Schweineherzen mit einer Wachstumskontrolle durch antihypertensive und antiproliferative Medikamente (mit unter anderem einem mTOR-Inhibitor) erfolgreich angegangen.

Ergebnisse und Diskussion

Insgesamt wurde ein einzigartiges Langzeitüberleben von 90 Tagen (n = 4) und in 2 Fällen 182 sowie 195 Tagen mit gezieltem Versuchsabbruch erreicht, ohne Nachweis einer hyperakuten oder verzögerten Abstoßung. Die Arbeit stellt gemäß den Empfehlungen der ISHLT, nämlich ein Überleben von 90 Tagen im orthotopen Primatenmodell von 60 % der Tiere zu erreichen, die Grundlage für einen Einsatz von Schweineherzen und die Voraussetzung für eine erste klinische Phase-I-Studie in den nächsten 2–5 Jahren am Patienten dar.

Abstract

AIM

According to the ISHLT advisory board guidelines for xenotransplantation (XT) a 90-day survival of a minimal 60 % (6 of 10 baboons) in a life-supporting orthotopic pig-to-baboon model (oXHTx) is recommended as a prerequisite to begin a clinical cardiac XT program.

The Munich xenotransplantation research team around Prof. Paolo Brenner and Prof. Bruno Reichart reproduced a previous excellent survival of 945 days in a non-life-supporting abdominal model now in a life-supporting orthotopic model with the same CD40mAb costimulation blockade immunosuppression (IS).

Methods

In the Munich team oXHTx in baboons with GalKO/hCD46/hTM transgenic (tg) pig hearts was performed using a basic IS consisting of ATG, rituximab, MMF, cortisone and CD40mAb. To avoid early perioperative cardiac xenograft dysfunction (PCXD) as a kind of early cardiac low output, we replaced the crystalloid cardioplegia with a non-ischemic 8 ℃ cold perfusion solution with oxygenated erythrocytes. To prevent pig xenograft overgrowth and hypertrophy, antihypertensive drugs and an anti-proliferative mTOR inhibitor (temsirolimus) were used.

Results

In comparison to crystalloid cardioplegia, now with non-ischemic cold perfusion no PCXD was found. With successful treatment of xenograft (over)growth and hypertrophy, 6 recipient baboons were long-term surviving (4 were actively terminated after 90 days according to the guidelines of the government). Two further experiments could be prolonged up to 182 and 195 days. All baboons lived under excellent physical conditions with no hyperacute or delayed xenograft rejection.

Discussion

Within the last 3 years after 25 years of experimental research in oXHT now we achieved a major progress and the essential milestone and breakthrough by realizing a constantly reproducible long-term survival of 3–6 months. Now the prerequisite according to the ISHLT for beginning a clinical phase I study are fulfilled and paves the way to clinical cardiac XT in the next 2–5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13

Literatur

  1. (2019) Total heart transplantations in Europe, global observatory on donation and transplantation 2019. http://www.transplant-observatory.org/data-charts-and-tables/chart/. Zugegriffen: 11. Dez. 2019

  2. Arshad A, Anderson B, Sharif A (2019) Comparison of organ donation and transplantation rates between opt-out and opt-in systems. Kidney Int 95(6):1453–1460

    Article  PubMed  Google Scholar 

  3. Goldstein DJ, Meyns B, Xie R, Cowger J, Pettit S, Nakatani T et al (2019) Third annual report from the ISHLT mechanically assisted circulatory support registry: a comparison of centrifugal and axial continuous-flow left ventricular assist devices. J Heart Lung Transplant 38(4):352–363

    Article  PubMed  Google Scholar 

  4. International Thoracic Organ Transplant (TTX) Registry Data Slides (2019) Adult heart transplantation statistics the international society for heart and lung transplantation. https://ishltregistries.org/registries/slides.asp. Zugegriffen: 11. Dez. 2019

  5. Hardy JD, Chavez CM, Kurrus FD, Neely WA, Eraslan S, Turner MD, Fabian LW, Labecki TD (1964) Heart transplantation in man: developmental studies and report of a case. JAMA 188:1132–1140

  6. Cooley DA, Hallman GL, Bloodwell RD, Nora JJ, Leachman RD (1968) Human heart transplantation: Experience with 12 cases. Am J Cardiol 22:804–810

  7. Ross DN (1969) In: Shapiro H (ed) Experience with human heart transplantation Durban, South Africa: Butterworths, Durban;140:228

  8. Marion P (199) Les transplantations cardiaques et les transplantations hepatiques. Lyon Med 222:585

  9. Barnard CN, Wolpitz A, Losman JG (1977) Heterotopic cardiac transplantation with a xenograft for assistance of left heart in cardiogenic shock after cardiopulmonary bypass. S Afr Med J 52:1035–1038

    CAS  PubMed  Google Scholar 

  10. Barnard CN, Losman JG (1977) Left ventricular bypass. S Afr Med J 49:303

    Google Scholar 

  11. Bailey LL, Li ZU, Roost H (1984) Host maturation after orthotopic cardiac transplantation during neonatal life. Heart transplant 3:265

    Google Scholar 

  12. Czapliki J, Blonska B, Religa Z (1992) The lack of hyperacute xenogeneic heart transplant rejection in a human. J Heart Lung Transplant 11:393

    Google Scholar 

  13. Baruah et al 1996 (unpublished)

  14. Brenner P, Hinz M, Huber H, Schmoeckel M, Reichenspurner H, Hammer C, Reichart B (1999) The influence of antibody and complement removal with a Ig-Therasorb column in a xenogeneic working heart model. Eur J Cardiothorac Surg 15(5):672–679

    Article  CAS  PubMed  Google Scholar 

  15. Brenner P, Hinz M, Huber H, Schmoeckel M, Reichenspurner H, Meiser B, Hammer C, Reichart B (1999) Effects of prolonged cold storage time in xenotransplantation. J Heart Lung Transplant 18(12):1211–1217

    Article  CAS  PubMed  Google Scholar 

  16. Lexer G, Cooper DK, Rose AG, Wicomb WN, Rees J, Keraan M et al (1986) Hyperacute rejection in a discordant (pig to baboon) cardiac xenograft model. J Heart Transplant 5(6):411–418

    CAS  PubMed  Google Scholar 

  17. Brenner P, Reichenspurner H, Schmoeckel M, Wimmer C, Rucker A, Eder V, Meiser B, Hinz M, Felbinger T, Müller-Höcker J, Hammer C, Reichart B (2000) IG-therasorb immunoapheresis in orthotopic xenotransplantation of baboons with landrace pig hearts. Transplantation 69(2):208–214

    Article  CAS  PubMed  Google Scholar 

  18. Brenner P, Schmoeckel M, Wimmer C, Eder V, Rucker A, Felbinger T, Uchita S, Hinz M, Brandl U, Meiser B, Reichenspurner H, Hammer C, Reichart B (2005) Mean xenograft survival of 14.6 days in a small group of hDAF transgenic pig hearts transplanted orthotopically into baboons. Transplant Proc 37(1):472–476

    Article  CAS  PubMed  Google Scholar 

  19. Brenner P, Reichenspurner H, Schmoeckel M, Wimmer C, Rucker A, Eder V, Meiser B, Hinz M, Felbinger T, Hammer C, Reichart B (2000) Prevention of hyperacute xenograft rejection in orthotopic xenotransplantation of pig hearts into baboons using immunoadsorption of antibodies and complement factors. Transpl Int 13(1):508–517

    Article  Google Scholar 

  20. Brenner P, Schmoeckel M, Wimmer C et al (2005) Combination of hDAF-transgenic pig hearts and immunoadsorption in heterotopic xenotransplantation of immunosuppressed baboons. Trans Proc 37:483–486

    Article  CAS  Google Scholar 

  21. Byrne GW, Du Z, Sun Z, Asmann YW, McGregor CGA (2011) Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation 18(1):14–27

    Article  PubMed  Google Scholar 

  22. Zhou H, Hara H, Cooper DKC (2019) The complex functioning of the complement system in xenotransplantation. Xenotransplantation 26(4):e12517

    Article  PubMed  PubMed Central  Google Scholar 

  23. Iwase H, Hara H, Ezzelarab M, Li T, Zhang Z, Gao B et al (2017) Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation. https://doi.org/10.1111/xen.12293

    Article  PubMed  PubMed Central  Google Scholar 

  24. DiChiacchio L, Singh A, Chan J, Corcoran P, Lewis B, Thomas M et al (2018) Human thrombomodulin expression confers prolonged graft survival over costimulation blockade alone in a pig-to-baboon heterotopic cardiac xenotransplant model. J Heart Lung Transplant 37(4):23

    Article  Google Scholar 

  25. Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Brenner P, Abicht J (2018) Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564(7736):430–433

    Article  PubMed  Google Scholar 

  26. Mohiuddin MM, Reichart B, Byrne GW, McGregor CGA (2015) Current status of pig heart xenotransplantation. Int J Surg 23(Pt B):234–239

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cooper DKC, Ezzelarab M, Iwase H, Hara H (2018) Perspectives on the optimal genetically engineered pig in 2018 for initial clinical trials of kidney or heart xenotransplantation. Transplantation 102(12):1974–1982

    Article  PubMed  PubMed Central  Google Scholar 

  28. Byrne G, Ahmad-Villiers S, Du Z, McGregor C (2018) B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen. Xenotransplantation 25(5):e12394

    Article  PubMed  PubMed Central  Google Scholar 

  29. Byrne GW, Du Z, Stalboerger P, Kogelberg H, McGregor CGA (2014) Cloning and expression of porcine β1,4N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation 21(6):543–554

    Article  PubMed  PubMed Central  Google Scholar 

  30. McGregor CGA, Byrne GW (2017) Porcine to human heart transplantation: is clinical application now appropriate? J Immunol Res 2017:2534653

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ono K, Lindsey ES (1969) Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg 57:225–229

    Article  CAS  PubMed  Google Scholar 

  32. Längin M, Panelli A, Reichart B et al (2018) Perioperative telemetric monitoring in pig-to-baboon Heterotopic thoracic cardiac xenotransplantation. Ann Transplant 23(20):491–499

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lower RR, Shumway NE (1960) Studies on orthotopic homotransplantation of the canine heart. Surg Forum 11:18–19

  34. Mohiuddin MM, Singh AK, Corcoran PC, Iii TML, Clark T, Lewis BG et al (2016) Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 7:11138–11148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh AK, Chan JL, Seavey CN, Corcoran PC, Hoyt RF Jr, Lewis BGT et al (2018) CD4+CD25HiFoxP3+ regulatory T cells in long-term cardiac xenotransplantation. Xenotransplantation 25(2):e12379

    Article  PubMed  Google Scholar 

  36. Iwase H, Liu H, Li T, Zhang Z, Gao B, Hara H et al (2017) Therapeutic regulation of systemic inflammation in xenograft recipients. Xenotransplantation. https://doi.org/10.1111/xen.12296

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ezzelarab MB, Ekser B, Azimzadeh A, Lin CC, Zhao Y, Rodriguez R et al (2015) Systemic inflammation in xenograft recipients precedes activation of coagulation. Xenotransplantation 22(1):32–47

    Article  PubMed  Google Scholar 

  38. Gao H, Liu L, Zhao Y, Hara H, Chen P, Xu J et al (2017) Human IL‑6, IL-17, IL-1β, and TNF‑α differently regulate the expression of pro-inflammatory related genes, tissue factor, and swine leukocyte antigen class I in porcine aortic endothelial cells. Xenotransplantation. https://doi.org/10.1111/xen.12291

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chan JL, Mohiuddin MM (2017) Heart xenotransplantation. Curr Opin Organ Transplant 22(6):549–554

    Article  PubMed  Google Scholar 

  40. Byrne GW, Davies WR, Oi K, Rao VP, Teotia SS, Ricci D et al (2006) Increased immunosuppression, not anticoagulation, extends cardiac xenograft survival. Transplantation 82(12):1787–1791

    Article  PubMed  Google Scholar 

  41. Cooper DKC, Iwase H, Yamamoto T, Hara H (2019) Life-supporting porcine cardiac xenotransplantation: the Munich study. Xenotransplantation 26(3):e12486

    Article  PubMed  PubMed Central  Google Scholar 

  42. Byrne GW, Du Z, Sun Z, Asmann YW, McGregor CG (2011) Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation 18:14–27

    Article  PubMed  Google Scholar 

  43. Steen S, Paskevicius A, Liao Q, Sjöberg T (2016) Safe orthotopic transplantation of hearts harvested 24 hours after brain death and preserved for 24 hours. Scand Cardiovasc J 50(3):193–200

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qin G, Su Y, Sjöberg T, Steen S (2018) Oxygen consumption of the aerobically-perfused cardioplegic donor heart at different temperatures. Ann Transplant 23:268–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iwase H, Ekser B, Hara H, Ezzelarab MB, Long C, Thomson AW et al (2016) Thyroid hormone: relevance to xenotransplantation. Xenotransplantation 23(4):293–299

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meier RPH, Muller YD, Balaphas A et al (2018) Xenotransplantation: back to the future? Transpl Int 31:465–477

    Article  PubMed  Google Scholar 

  47. Reed RM, Netzer G, Hunsicker L, Mitchell BD, Rajagopal K, Scharf S et al (2014) Cardiac size and sex-matching in heart transplantation : size matters in matters of sex and the heart. JACC Heart Fail 2(1):73–83

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tanabe T, Watanabe H, Shah JA, Sahara H, Shimizu A, Nomura S et al (2017) Role of intrinsic (graft) versus extrinsic (host) factors in the growth of transplanted organs following allogeneic and xenogeneic transplantation. Am J Transplant 17(7):1778–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iwase H, Liu H, Wijkstrom M, Zhou H, Singh J, Hara H et al (2015) Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date. Xenotransplantation 22(4):302–309

    Article  PubMed  PubMed Central  Google Scholar 

  50. Roberts WC, Kondapalli N, Guileyardo JM (2018) Morphologic findings in donor (transplanted) hearts at necropsy early and late after orthotopic heart transplantation. Am J Cardiol 121(2):217–240

    Article  PubMed  Google Scholar 

  51. Roberts WC, Won VS, Vasudevan A, Guileyardo JM (2016) Characteristics of hearts at necropsy in patients treated chronically with prednisone (the corticosteroid heart). Am J Cardiol 118(12):1935–1940

    Article  CAS  PubMed  Google Scholar 

  52. Beinlich CJ, Rissinger CJ, Morgan HE (1995) Mechanisms of rapid growth in the neonatal pig heart. J Mol Cell Cardiol 27(1):273–281

    Article  CAS  PubMed  Google Scholar 

  53. Swindle MMSA (2016) Swine in the laboratory: surgery, anesthesia, imaging, and experimental techniques, 3. Aufl. CRC Press, Boca Raton

    Google Scholar 

  54. Cooper DKC, Keogh AM, Brink J, Corris PA, Klepetko W, Pierson RN III et al (2000) Report of the xenotransplantation advisory committee of the international society for heart and lung transplantation:: The present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases. J Heart Lung Transplant 19(12):1125–1165

    Article  CAS  PubMed  Google Scholar 

  55. https://www.sciencemag.org/news/2017/09/scientists-grow-bullish-pig-human-transplants. Zugegriffen: Sep. 2017

  56. Fishman JA (2018) Infectious disease risks in xenotransplantation. Am J Transplant 18(8):1857–1864

    Article  PubMed  Google Scholar 

  57. Fishman JA (2019) Infection in xenotransplantation: opportunities and challenges. Curr Opin Organ Transplant 24(5):527–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cooper DKC, Gaston R, Eckhoff D, Ladowski J, Yamamoto T, Wang L et al (2018) Xenotransplantation-the current status and prospects. Br Med Bull 125(1):5–14

    Article  CAS  PubMed  Google Scholar 

  59. Denner J (2017) The porcine virome and xenotransplantation. Virol J 14(1):171–178

    Article  PubMed  PubMed Central  Google Scholar 

  60. Denner J (2018) Reduction of the survival time of pig xenotransplants by porcine cytomegalovirus. Virol J 15(1):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Denner J, Scobie L, Schuurman H‑J (2018) Is it currently possible to evaluate the risk posed by PERVs for clinical xenotransplantation? Xenotransplantation 25(4):e12403

    Article  PubMed  Google Scholar 

  62. Goerlich CE, Chan JL, Mohiuddin MM (2019) Regulatory barriers to xenotransplantation. Curr Opin Organ Transplant 24(5):522–526

    Article  PubMed  Google Scholar 

  63. Niu D, Wei H‑J, Lin L, George H, Wang T, Lee IH et al (2017) Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357(6357):1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamada K, Tasaki M, Sekijima M, Wilkinson RA, Villani V, Moran SG et al (2014) Porcine cytomegalovirus infection is associated with early rejection of kidney grafts in a pig to baboon xenotransplantation model. Transplantation 98(4):411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morozov VA, Abicht J‑M, Reichart B, Mayr T, Guethoff S, Denner J (2016) Active replication of porcine cytomegalovirus (PCMV) following transplantation of a pig heart into a baboon despite undetected virus in the donor pig. Robert Koch-Institut, Infektionskrankheiten / Erreger

    Google Scholar 

  66. Fiebig U, Abicht J‑M, Mayr T, Längin M, Bähr A, Guethoff S et al (2018) Distribution of porcine cytomegalovirus in infected donor pigs and in baboon recipients of pig heart transplantation. Viruses 10(2):66

    Article  PubMed Central  Google Scholar 

  67. Abicht J‑M, Mayr TA, Reichart B, Plotzki E, Güthoff S, Falkenau A et al (2016) Hepatic failure after pig heart transplantation into a baboon: no involvement of porcine hepatitis E virus. Ann Transplant 21:12–16

    CAS  PubMed  Google Scholar 

  68. Bongoni AK, Kiermeir D, Jenni H, Bähr A, Ayares D, Klymiuk N, Wolf E, Voegelin E, Constantinescu MA, Seebach JD, Rieben R (2014) Complement dependent early immunological responses during ex vivo xenoperfusion of hCD46/HLA‑E double transgenic pig forelimbs with human blood. Xenotransplantation 21(3):230–243

    Article  PubMed  Google Scholar 

  69. Oropeza M, Petersen B, Carnwath JW, Lucas-Hahn A, Lemme E, Hassel P, Herrmann D, Barg-Kues B, Holler S, Queisser AL, Schwinzer R, Hinkel R, Kupatt C, Niemann H (2009) Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16(6):522–534

    Article  PubMed  Google Scholar 

  70. Dutra FF, Bozza MT (2014) Heme on innate immunity and inflammation. Front Pharmacol 5:115

    Article  PubMed  PubMed Central  Google Scholar 

  71. Buerck LW‑V, Schuster M, Oduncu FS, Baehr A, Mayr T, Guethoff S, Abicht J, Reichart B, Klymiuk N, Wolf E, Seissler J (2017) LEA29Y expression in transgenic neonatal porcine islet-like cluster promotes long-lasting xenograft survival in humanized mice without immunosuppressive therapy. Sci Rep 7:3572–3608

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ekser B, Li P, Cooper DKC (2017) Xenotransplantation: past, present, and future. Curr Opin Organ Transplant 22(6):513–521

    Article  PubMed  PubMed Central  Google Scholar 

  73. U.S. Department of Health and Human Services FaDA. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research. Source Animal, Product, Preclinical, and Clinical Issues Concerning the Use of Xenotransplantation Products in Humans; Guidance for Industry. In: U.S. Department of Health and Human Services FaDA, editor. 2016.

  74. Cleveland D, Banks AC, Hara H, Carlo WF, Mauchley DC, Cooper DKC (2019) The case for cardiac xenotransplantation in neonates: is now the time to reconsider xenotransplantation for hypoplastic left heart syndrome? Pediatr Cardiol 40(2):437–444

    Article  PubMed  Google Scholar 

  75. Platt JL, West LJ, Chinnock RE, Cascalho M (2018) Toward a solution for cardiac failure in the newborn. Xenotransplantation 25(6):e12479

    Article  PubMed  PubMed Central  Google Scholar 

  76. Griffith B, Goerlich C et al (2022) Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N Engl J Med. https://doi.org/10.1056/NEJMoa2201422

    Article  PubMed  Google Scholar 

  77. Pierson RN 3rd (2020) A major advance toward clinical cardiac xenotransplantation. J Thorac Cardiovasc Surg 159(1):166–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Brenner.

Ethics declarations

Interessenkonflikt

P. Brenner gibt an, dass kein Interessenkonflikt besteht.

Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten, und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Additional information

Der vorliegende Beitrag ist eine Zusammenfassung der Originalarbeit der Autoren: Längin M, Mayr T, Reichart B (2018) Consistent success in life-supporting porcine cardiac xenotransplantation. Nature 564 (7736): 430–433.

Der Inhalt dieser Arbeit wurde 2020 mit dem Ernst-Derra-Preis der Deutschen Gesellschaft für Thorax‑, Herz- und Gefäßchirurgie ausgezeichnet.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, P. Stand der Technik und Durchbruch bei der kardialen Xenotransplantation. Z Herz- Thorax- Gefäßchir 36, 334–354 (2022). https://doi.org/10.1007/s00398-022-00534-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-022-00534-6

Schlüsselwörter

Keywords

Navigation