Skip to main content

Advertisement

Log in

Kontinuierlich fördernde Blutpumpen für die Langzeitherzunterstützung

Vergleich zwischen Axial- und Radialpumpen

Continuous-flow blood pumps for long-term ventricular support

Comparison between axial and centrifugal pumps

  • Kardiotechnik/EKZ
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Für die Langzeitherzunterstützung werden derzeit 4 Axial- und 4 Radialpumpen kommerziell vertrieben. In dieser Arbeit werden diese Pumpen vorgestellt und in ihrer Leistung miteinander verglichen. Während sich die Leistungsdaten der Radialpumpen stark ähneln, zeigen die Kennlinien für den Druck in Abhängigkeit vom Volumenstrom bei den Axialpumpen charakteristische Unterschiede auf. Insgesamt erzeugen die Radialpumpen bei vergleichbarem Volumenstrom einen höheren Blutdruck. Der wesentliche Vorteil der Axialpumpen liegt in ihrer kleineren Baugröße. Untersuchungen zu Hämolyse und zum Auftreten des Von-Willebrand-Syndroms zeigen Vorteile für die Radialpumpen.

Abstract

For long-term ventricular support four axial pumps and four centrifugal pumps are currently commercially available. This article presents these pumps and their performances are compared. The pressure-volume flow characteristics of all centrifugal pumps show a great similarity, whereas the pressure curves of the axial pumps show characteristic differences depending on the volume flow of each pump. Altogether centrifugal pumps can produce a higher blood pressure than axial pumps at a similar volume flow. The main advantage of the axial pumps is their smaller design size. Comparative studies have shown that centrifugal pumps cause less hemolysis and occurrence of von Willebrand’s disease than axial pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Rose EA, Gelijns AC, Moskowitz AJ et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345(20):1435–1443

    CAS  PubMed  Google Scholar 

  2. Slaughter MS, Tsui SS, El-Banayosy A et al (2007) Results of a multicenter clinical trial with the thoratec Implantable ventricular assist device. J Thorac Cardiovasc Surg 133(6):1573–1580

    PubMed  Google Scholar 

  3. Voss B, Krane M, Jung C et al (2010) Cardiopulmonary bypass with physiological flow and pressure curves: pulse is unnecessary! Eur J Cardiothorac Surg 37:223–232

    PubMed  Google Scholar 

  4. Wu EL, Kleinheyer M, Ündar A (2018) Pulsatile vs. continuous flow. In: Gregory SD, Stevens MC, Fraser JF (Hrsg) Mechanical circulatory and respiratory support. Academic Press, London, S 379–403

    Google Scholar 

  5. Graefe R, Groß-Hardt S (2018) Second-generation ventricular assist devices. In: Gregory SD, Stevens MC, Fraser JF (Hrsg) Mechanical circulatory and respiratory support. Academic Press, London

    Google Scholar 

  6. Foster G (2018) Third-generation ventricular assist devices. In: Gregory SD, Stevens MC, Fraser JF (Hrsg) Mechanical circulatory and respiratory support. Academic Press, London

    Google Scholar 

  7. Wieselthaler GM, Schima H, Laufer G et al (1999) First clinical implants of the continuous debakey Vadtm axial flow pump. ASAIO J 45(2):156

    Google Scholar 

  8. DeBakey ME (1997) Development of a ventricular assist device. Artif Organs 21(11):1149–1153

    CAS  PubMed  Google Scholar 

  9. DeBakey ME (2005) Development of mechanical heart devices. Ann Thorac Surg 79:2228–2231

    Google Scholar 

  10. Noon GB, Loebe M, Coselli JS (2010) Current status of the MicroMed DeBakey noon ventricular assist device. Tex Heart Inst J 37(6):652–653

    PubMed  PubMed Central  Google Scholar 

  11. Sayer G, Jeevanandam V, Ota T et al (2017) Invasive hemodynamic echocardiographic ramp test in the heartassist5 LVAD: insights into device performance. ASAIO J 63:e10–e12

    PubMed  Google Scholar 

  12. Stanfield JR, Selzman CH (2013) In vitro hydrodynamic analysis of pin and cone bearing designs of the Jarvik 2000 adult ventricular assist device. Artif Organs 37(9):825–833

    PubMed  Google Scholar 

  13. Itoda Y, Nawata K, Yamauchi H et al (2017) Central aortic valve closure successfully treated aortic insufficiency of the patient with Jarvik 2000 continuous flow left ventricular assist device: a case report. J Artif Organs 20(1):99–101

    PubMed  Google Scholar 

  14. Frazier OH, Myers TJ, Gregoric ID et al (2002) Clinical experience with the Jarvik 2000 implantable axial-flow left ventricular assist system. Circulation 105:2855–2860

    CAS  PubMed  Google Scholar 

  15. Liebermann A (2011) Vergleich des retroaurikulären, linksventrikulären Unterstützungssystem (LVAD) Jarvik 2000 als neue Alternative zur Herztransplantation mit dem System abdomineller Stromversorgung als Überbrückung zur Herztransplantation. Dissertation. Ludwig-Maximilians-Universität, München

    Google Scholar 

  16. Yoshioka D, Matsumiya G, Toda K et al (2014) Clinical results with the Jarvik 2000 axial flow left ventricular assist device: Osaka University Experience. J Artif Organs 17:308–314

    PubMed  Google Scholar 

  17. Selzman CH, Koliopoulou A, Glotzbach JP et al (2018) Evolutionary improvements in the Jarvik 2000 left ventricular assist device. ASAIO J 64:827–830

    PubMed  Google Scholar 

  18. Tanoue Y, Jinzai Y, Tominaga R (2016) Jarvik 2000 axial-flow ventricular assist device placement to a systemic morphologic right ventricle in congenitally corrected transposition of the great arteries. J Artif Organs 19:97–99

    PubMed  Google Scholar 

  19. Frazier OH, Delgado RM III, Kar B et al (2004) First clinical use of the redesigned HeartMate® II left ventricular assist system in the United States. Tex Heart Inst J 31:157–159

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Frazier OH, Gemmato C, Myers TJ et al (2007) Initial clinical experience with the HeartMate® II axial-flow left ventricular assist device. Tex Heart Inst J 34:275–281

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Drews T, Krabatsch T (2017) Langzeitunterstützung – Intrakorporale Systeme einschließlich Implantationstechniken – Axialer Antrieb. In: Boeken U, Assmann A, Born F et al (Hrsg) Mechanische Herz-Kreislauf-Unterstützung, Bd. 2. Springer, Berlin, S 66–74

    Google Scholar 

  22. Tchantchaleishvili V, Cheyne C, Sherazi S, Melvin AL, Hallinan W, Chen L, Massey HT (2016) Single-center experience with heartmate II left ventricular assist device explantation. Artif Organs 40(12):1145–1149

    CAS  PubMed  Google Scholar 

  23. Camboni D, Zerdzitzki M, Hirt S et al (2017) Reduction of INCOR® driveline infection rate with silicone at the driveline exit site. Interact Cardiovasc Thorac Surg 24:222–228

    PubMed  Google Scholar 

  24. Hetzer R, Weng Y, Potapov EV et al (2004) First experiences with a novel magnetically suspended axial flow left ventricular assist device. Eur J Cardiothorac Surg 25:964–970

    PubMed  Google Scholar 

  25. Huber CH, Tozzi P, Hurni M et al (2004) No drive line, no seal, no bearing and no wear: magnetics for impeller suspension and flow assessment in a new VAD. Interact Cardiovasc Thorac Surg 3:336–340

    PubMed  Google Scholar 

  26. Schmid C, Tjan TD, Etz C et al (2005) First clinical experience with the Incor left ventricular assist device. J Heart Lung Transpl 24(9):1188–1194

    Google Scholar 

  27. Komoda T, Komoda S, Dandel M et al (2008) Explantation of INCOR left ventrikular assist device after myocardial recovery. J Cardiac Surg 23:642–647

    Google Scholar 

  28. Ochiai Y, Golding LAR, Massielo AL et al (2002) Cleveland clinic coraide blood pump circulatory support without anticoagulation. ASAIO J 48:249–252

    PubMed  Google Scholar 

  29. Fukamachi K (2004) New technologies for mechanical circulatory support: current status and future prospects of CorAide and MagScrew technologies. J Artif Organs 7:45–57

    PubMed  Google Scholar 

  30. Saeed D, Arusoglu L, Gazzoli F et al (2012) Results of the European clinical trial of arrow coraide left ventricular assist system. Artif Organs 37(2):121–127

    PubMed  Google Scholar 

  31. Esmore D, Spratt P, Larbalestier R et al (2007) VentrassistTM left ventricular assist device: clinical trial results and clinical development plan update. Eur J Cardiothorac Surg 32:735–744

    PubMed  Google Scholar 

  32. Esmore D, Kaye D, Spratt P et al (2008) A prospective, multicenter trial of the ventrassist left ventricular assist device for bridge to transplant: safety and efficiency. J Heart Lung Transplant 27(6):579–588

    PubMed  Google Scholar 

  33. Kurihara C, Ono M, Nishimura T et al (2011) Use of DuraHeart® support for more than 1 year as the first successful bridge to heart transplantation in Japan. J Artif Organs 14:67–69

    PubMed  Google Scholar 

  34. Nishinaka T, Schima H, Roethy W et al (2006) The Duraheart VAD, a magnetically levitated centrifugal pump—the university of Vienna bridge- to-transplantation experience. Circ J 70:1421–1425

    PubMed  Google Scholar 

  35. Moazani N, Pagani F, Feldman D et al (2013) Hemocompatibility of a fully magnetically levitated centrifugal LVAD: results from the Duraheart pivotal trial. J Heart Lung Transplant 32(4S):11

    Google Scholar 

  36. Sawa Y (2015) Current status of third-generation implantable left ventricular assist devices in Japan, Duraheart and HeartWare. Surg Today 45:672–681

    PubMed  Google Scholar 

  37. Matsumoto Y, Fujita T, Fukushima S et al (2017) 889 days of support on hydrodynamic bearing rotation mode of the DuraHeartTM for bridge-to-heart transplantation. J Artif Organs 20:270–273

    PubMed  Google Scholar 

  38. Yamazaki K, Kihara S, Akimoto T et al (2002) EVAHEARTTM: an implantable centrifugal blood pump for long-term circulatory support. Jpn J Thorac Cardiovasc Surg 50(11):461–465

    PubMed  Google Scholar 

  39. Kitano T, Iwasaki K (2018) Long-term Durability test fort he left ventricular assist system EVAHEART under the physiologic Pulsatile load. ASAIO J 64:168–174

    PubMed  Google Scholar 

  40. Motomura T, Tuzun E, Yamazaki K et al (2019) Preclinical evaluation of the EVAHEART 2 centrifugal left ventricular assist device in bovines. ASAIO J 65(8):845–854

    PubMed  Google Scholar 

  41. Arakawa M, Nishimura T, Takewa Y et al (2016) Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability. J Artif Org 19:204–207

    Google Scholar 

  42. Nishi H, Toda K, Miyagawa S et al (2014) Initial experience in Japan with HeartWare ventricular assist system. J Artif Organs 17:149–156

    PubMed  Google Scholar 

  43. Rojas SV, Strüber M, Haverich A et al (2017) Langzeitunterstützung – Intrakorporale Systeme einschließlich Implantationstechniken – Zentrifugaler Antrieb. In: Boeken U, Assmann A, Born F et al (Hrsg) Mechanische Herz-Kreislauf-Unterstützung, 2. Aufl. Springer, Berlin, S 74–76

    Google Scholar 

  44. Pac M, Kocabeyoglu SS, Kervan U et al (2018) Third generation ventricular assist device: mid-term outcomes of the heartware HVAD in pediatric patients. J Artif Organs 42(2):141–147

    Google Scholar 

  45. Tran HA, Pollema TL, Enciso SJ et al (2018) Durable biventricular support using right atrial placement of the heartware HVAD. ASAIO J 64:323–327

    PubMed  Google Scholar 

  46. Heatley G, Sood P, Goldstein D et al (2016) Clinical trial design and rationale of the multicenter study of maglev technology in patients undergoing mechanical circulatory support therapy with heartmate 3 (MOMENTUM 3) investigational device exemption clinical study protocol. J Heart Lung Transplant 35(4):528–536

    PubMed  Google Scholar 

  47. Tozzi P, Banfi C, Ahmadov K et al (2017) Heartmate 3 in lowest INTERMACS profile cohort: the Swiss experience. ASAIO J 63:752–758

    PubMed  Google Scholar 

  48. Ganz L (2019) Ergebnisse der ersten Patienten mit einem linksventrikulären Assist-Device der 4. Generation am Herzzentrum Leipzig. Dissertation. Herzzentrum der Universität, Leipzig

    Google Scholar 

  49. Noor MR, Ho CH, Parker KH et al (2016) Investigation of the characteristics of heartware HVAD and Thoratec heartmate II under steady and Pulsatile flow conditions. J Artif Organs 40(6):549–560

    CAS  Google Scholar 

  50. Thoratec (2018) HeartMate3 left ventricular assist system – instruction for use. Thoratec Corporation, Pleasanton

    Google Scholar 

  51. Kirklin JK, Naftel DC, Pagani FD et al (2014) Sixth INTERMACS annual report: A 10,000-patient database. J Heart Lung Transplant 33(6):555–564

    PubMed  Google Scholar 

  52. De By TMMH, Mohasci P, Gahl B et al (2018) The European registry for patients with mechanical circulatory support (EUROMACS) of the European Association for Cardio-Thoracic Surgery (EACTS): second report. Eur J Cardiothorac Surg 53:309–316

    PubMed  Google Scholar 

  53. Nakatani T, Sase K, Oshiyama H et al (2017) Japanese registry for mechanically assisted circulatory support: first report. J Heart Lung Transplant 36(10):1087–1096

    PubMed  Google Scholar 

  54. Thamsen B, Blümel B, Schaller J et al (2015) Numerical analysis of blood damage potential of the heartmate II and heartware HVAD rotary blood pumps. J Artif Organs 39(8):651–659

    Google Scholar 

  55. Bartoli CR, Kang J, Zhang D et al (2017) Left ventricular assist device design reduces von Willebrand factor degradation: a comparative study between the heartmate II and the EVAHEART left Ventricalar assist system. Ann Thorac Surg 103:1239–1245

    PubMed  Google Scholar 

  56. Bartoli CR, Dassanayaka S, Brittian KR et al (2014) Insights into the mechanism(s) of von Willebrand factor degradation during mechanical circulatory support. J Thorac Cardiovasc Surg 147:1634–1643

    CAS  PubMed  Google Scholar 

  57. Bartoli CR, Restle DJ, Zhang DM et al (2015) Pathologic von Willebrand factor degradation with a left ventricular assist device occurs via two distinct mechanisms: mechanical demolition and enzymatic cleavage. J Thorac Cardiovasc Surg 149:281–289

    CAS  PubMed  Google Scholar 

  58. Nascimbene A, Neelamegham S, Frazier OH et al (2016) Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 127(25):3133–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosenberg G, Siedlecki CA, Jhun C‑S et al (2018) Acquired von Willebrand syndrome and blood pump design. J Artif Organs 42(12):1119–1124

    Google Scholar 

  60. Geisen U, Brehm K, Trummer G et al (2016) Improved values for acquired von Willebrand syndrome and better clinical outcome in patients with HeartMate III compared to HeartMate II. Blood 128(22):2582

    Google Scholar 

Download references

Danksagung

Die Autorin möchte der Carl von Ossietzky Universität in Oldenburg, besonders Herrn Andreas Hein, sowie dem Deutschen Herzzentrum Berlin danken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge Köhne.

Ethics declarations

Interessenkonflikt

I. Köhne gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von der Autorin keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köhne, I. Kontinuierlich fördernde Blutpumpen für die Langzeitherzunterstützung. Z Herz- Thorax- Gefäßchir 34, 359–370 (2020). https://doi.org/10.1007/s00398-020-00398-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-020-00398-8

Schlüsselwörter

Keywords

Navigation