Skip to main content

Advertisement

Log in

Systemminimalisierung im Rahmen der extrakorporalen Zirkulation

Technische Möglichkeiten der Vermeidung EKZ-assoziierter pathophysiologischer Veränderungen

System minimization within the framework of extracorporeal circulation

Technical possibilities for avoiding ECC-associated pathophysiological alterations

  • Kardiotechnik/EKZ
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Die extrakorporale Zirkulation (EKZ) und die Herzchirurgie sind bis heute untrennbar miteinander verbunden. Tatsächlich wurden erst durch die Einführung des kardiopulmonalen Bypasses (KBP) viele herzchirurgische Eingriffe möglich. Bereits früh wurde den Anwendern bewusst, dass die EKZ deutliche Nebenwirkungen erzeugt und bei Patienten nach Herzoperationen Auslöser schwieriger postoperativer Verläufe sein kann. Eine weniger invasive EKZ erscheint sinnvoll, da diese erstens bei vielen Herzoperationen unverzichtbar ist und es zweitens Hinweise darauf gibt, dass das Operieren mit EKZ die Ergebnisqualität der koronaren Bypass-Anastomosen positiv beeinflussen kann. Das Konzept der minimalinvasiven extrakorporalen Zirkulation (Mi-EKZ) versucht dem Anspruch der verringerten Invasivität zu entsprechen, ohne auf die Vorteile (Kreislauf- und Herzentlastung) eines KPB verzichten zu müssen.

Abstract

To date extracorporeal circulation (ECC) and cardiac surgery are still inextricably linked to each other. It was only the introduction of the cardiopulmonary bypass (CBP) that made many cardiac surgical procedures possible. Very early on physicians became aware that ECC resulted in significant side effects, which can be responsible for triggering severe postoperative complications in patients after cardiac surgery. A less invasive ECC seems to make sense, firstly because this is indispensable for many heart operations and secondly there are indications that the use of ECC in coronary surgery can have a positive influence on the quality of the results of coronary bypass anastomoses. The concept of minimally invasive extracorporeal circulation (MiECC) aims to fulfil the requirements of reduced invasiveness without sacrificing the benefits of CPB (e.g. support of cardiocirculatory function).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Shann KG, Likosky DS, Murkin JM, Baker RA, Baribeau YR, DeFoe GR et al (2006) An evidence-based review of the practice of cardiopulmonary bypass in adults: a focus on neurologic injury, glycemic control, hemodilution, and the inflammatory response. J Thorac Cardiovasc Surg 132(2):283–290

    Article  Google Scholar 

  2. Kowalewski M, Pawliszak W, Malvindi PG, Bokszanski MP, Perlinski D, Raffa GM et al (2016) Off-pump coronary artery bypass grafting improves short-term outcomes in high-risk patients compared with on-pump coronary artery bypass grafting: meta-analysis. J Thorac Cardiovasc Surg 151(1):60–77.e58

    Article  Google Scholar 

  3. Hattler B, Messenger JC, Shroyer AL, Collins JF, Haugen SJ, Garcia JA et al (2012) Off-pump coronary artery bypass surgery is associated with worse arterial and saphenous vein graft patency and less effective revascularization: results from the veterans affairs randomized on/off bypass (ROOBY) trial. Circulation 125(23):2827–2835

    Article  Google Scholar 

  4. Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E et al (2009) On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med 361(19):1827–1837

    Article  CAS  Google Scholar 

  5. Houlind K, Fenger-Grøn M, Holme SJ, Kjeldsen BJ, Madsen SN, Rasmussen BS et al (2014) Graft patency after off-pump coronary artery bypass surgery is inferior even with identical heparinization protocols: results from the Danish on-pump versus off-pump randomization study (DOORS). J Thorac Cardiovasc Surg 148(5):1812–1819.e2

    Article  Google Scholar 

  6. El-Elssawi A, Bauer A, Gröger S, Hausmann H, Gehron J, Böning A, Harringer W (2019) Minimal invasive extrakorporale Zirkulation. Fakt oder Fiktion? Z Herz Thorax Gefasschir. https://doi.org/10.1007/s00398-019-0349-x

    Article  Google Scholar 

  7. Hessel EA (2015) History of cardiopulmonary bypass (CPB). Best Pract Res Clin Anaesthesiol 29:99–111

    Article  Google Scholar 

  8. Gravlee GP (2008) Cardiopulmonary bypass: principles and practice. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  9. Warren OJ, Watret AL, de Wit KL, Alexiou C, Vincent C, Darzi AW et al (2009) The inflammatory response to cardiopulmonary bypass: part 2‑anti-inflammatory therapeutic strategies. J Cardiothorac Vasc Anesth 23(3):384–393

    Article  CAS  Google Scholar 

  10. Fabre O, Vincentelli A, Corseaux D, Juthier F, Susen S, Bauters A et al (2008) Comparison of blood activation in the wound, active vent, and cardiopulmonary bypass circuit. Ann Thorac Surg 86(2):537–541

    Article  Google Scholar 

  11. Anastasiadis K, Antonitsis P, Argiriadou H (2013) Principles of miniaturized extracorporeal circulation

    Book  Google Scholar 

  12. Murphy GS, Hessel EA, Groom RC (2009) Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth Analg 108(5):1394–1417

    Article  Google Scholar 

  13. Kirklin JK, Blackstone EH, Kirklin JW (1987) Cardiopulmonary bypass: studies on its damaging effects. Blood Purif 5(2–3):168–178

    Article  CAS  Google Scholar 

  14. McGuinness J, Bouchier-Hayes D, Redmond JM (2008) Understanding the inflammatory response to cardiac surgery. Surgeon 6(3):162–171

    Article  CAS  Google Scholar 

  15. Gorbet MB, Sefton MV (2006) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25:219–241

    Google Scholar 

  16. Giacinto O, Satriano U, Nenna A, Spadaccio C, Lusini M, Mastroianni C et al (2019) Inflammatory response and endothelial dysfunction following cardiopulmonary bypass: pathophysiology and pharmacological targets. Recent Pat Inflamm Allergy Drug Discov. https://doi.org/10.2174/1872213X13666190724112644

    Article  PubMed  Google Scholar 

  17. Svenmarker S, Häggmark S, Jansson E, Lindholm R, Appelblad M, Sandström E et al (2002) Use of heparin-bonded circuits in cardiopulmonary bypass improves clinical outcome. Scand Cardiovasc J 36(4):241–246

    Article  CAS  Google Scholar 

  18. Ranucci M, Cirri S, Conti D, Ditta A, Boncilli A, Frigiola A et al (1996) Beneficial effects of duraflo II heparin-coated circuits on postperfusion lung dysfunction. Ann Thorac Surg 61(1):76–81

    Article  CAS  Google Scholar 

  19. Hsu L‑C (2001) Heparin-coated cardiopulmonary bypass circuits: current status. Perfusion 16(5):417–428

    Article  CAS  Google Scholar 

  20. Wendel HP, Ziemer G (1999) Coating-techniques to improve the hemocompatibility of articial devices used for extracorporeal circulation. Eur J Cardiothorac Surg 16:342–350

    Article  CAS  Google Scholar 

  21. Schoenberger JPAM, Everts PAM, Hoffmann JJ (1995) Systemic blood activation with open and closed venous reservoirs. Ann Thorac Surg 59(6):1549–1555. https://doi.org/10.1016/0003-4975(95)00241-C

    Article  Google Scholar 

  22. Vercaemst L (2008) Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: a review in search of a treatment algorithm. J Extra Corpor Technol 40(4):257–267

    PubMed  PubMed Central  Google Scholar 

  23. Wippermann J, Albes JM, Hartrumpf M, Kaluza M, Vollandt R, Bruhin R et al (2005) Comparison of minimally invasive closed circuit extracorporeal circulation with conventional cardiopulmonary bypass and with off-pump technique in CABG patients: selected parameters of coagulation and inflammatory system. Eur J Cardiothorac Surg 28(1):127–132

    Article  Google Scholar 

  24. Friedman LI, Richardson PD, Galletti PM (1971) Observations of acute thrombogenesis in membrane oxygenators. Trans Am Soc Artif Intern Organs 17:369–375

    CAS  PubMed  Google Scholar 

  25. Schaadt J (1999) Oxygenator thrombosis: an international phenomenon. Perfusion 14(6):425–435

    Article  CAS  Google Scholar 

  26. Wendel HP, Philipp A, Weber N, Birnbaum DE, Ziemer G (2001) Oxygenator thrombosis: worst case after development of an abnormal pressure gradient—incidence and pathway. Perfusion 16(4):271–278

    Article  CAS  Google Scholar 

  27. Warren OJ, Wallace S, de Wit KL, Vincent C, Darzi AW, Athanasiou T (2010) Variations in the application of various perfusion technologies in Great Britain and Ireland—a national survey. Artif Organs 34(3):200–205

    Article  Google Scholar 

  28. Klein M, Dauben HP, Schulte HD, Gams E (1998) Centrifugal pumping during routine open heart surgery improves clinical outcome. Artif Organs 22(4):326–336

    Article  CAS  Google Scholar 

  29. Wahba A, Milojevic M, Boer C, De Somer FMJJ, Gudbjartsson T, van den Goor J et al (2019) 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur J Cardiothorac Surg. https://doi.org/10.1093/ejcts/ezz267

    Article  Google Scholar 

  30. Edmunds LH Jr. (1998) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 66(5):12–16

    Article  Google Scholar 

  31. Svitek V, Lonsky V, Anjum F (2010) Pathophysiological aspects of cardiotomy suction usage. Perfusion 25(3):147–152

    Article  Google Scholar 

  32. Gäbel J, Westerberg M, Bengtsson A, Jeppsson A (2013) Cell salvage of cardiotomy suction blood improves the balance between pro- and anti-inflammatory cytokines after cardiac surgery. Eur J Cardiothorac Surg 44(3):506–511

    Article  Google Scholar 

  33. Lau K, Shah H, Kelleher A, Moat N (2007) Coronary artery surgery: cardiotomy suction or cell salvage? J Cardiothorac Surg 2:46

    Article  Google Scholar 

  34. Tabuchi N, de Haan J, Boonstra PW, van Oeveren W (1993) Activation of fibrinolysis in the pericardial cavity during cardiopulmonary bypass. J Thorac Cardiovasc Surg 106(5):828–833

    Article  CAS  Google Scholar 

  35. Weerwind PW, Lindhout T, Caberg NE, de Jong DS (2003) Thrombin generation during cardiopulmonary bypass: the possible role of retransfusion of blood aspirated from the surgical field. Thromb J 1:3

    Article  Google Scholar 

  36. Tabuchi N, Sunamori M, Koyama T, Shibamiya A (2001) Remaining procoagulant property of wound blood washed by a cell-saving device. Ann Thorac Surg 71(5):1749–1750

    Article  CAS  Google Scholar 

  37. Brooker RF, Brown WR, Moody DM, Hammon JW, Reboussin DM, Deal DD et al (1998) Cardiotomy suction: a major source of brain lipid emboli during cardiopulmonary bypass. Ann Thorac Surg 65(6):1651–1655

    Article  CAS  Google Scholar 

  38. Albes JM, Stohr IM, Kaluza M, Siegemund A, Schmidt D, Vollandt R et al (2003) Physiological coagulation can be maintained in extracorporeal circulation by means of shed blood separation and coating. J Thorac Cardiovasc Surg 126(5):1504–1512

    Article  Google Scholar 

  39. Dai B, Wang L, Djaiani G, Mazer CD (2004) Continuous and discontinuous cell-washing autotransfusion systems. J Cardiothorac Vasc Anesth 18(2):210–217

    Article  Google Scholar 

  40. Anastasiadis K, Murkin J, Antonitsis P, Bauer A, Ranucci M, Gygax E et al (2016) Use of minimal invasive extracorporeal circulation in cardiac surgery: principles, definitions and potential benefits. A position paper from the minimal invasive extra-corporeal technologies international society (MiECTiS). Interact Cardiovasc Thorac Surg 22(5):647–662. https://doi.org/10.1093/icvts/ivv380

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jenni H, Rheinberger J, Czerny M, Gygax E, Rieben R, Krähenbühl E et al (2011) Autotransfusion system or integrated automatic suction device in minimized extracorporeal circulation: influence on coagulation and inflammatory response. Eur J Cardiothorac Surg 39(5):e139–43

    Article  Google Scholar 

  42. Hensley FA, Martin DE, Gravlee GP (2007) A practical approach to cardiac anesthesia, 4. Aufl. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Bauer PhD, ECCP.

Ethics declarations

Interessenkonflikt

A. Bauer erhielt Vortragshonorare der Getinge Deutschland GmbH, Dr. F. Köhler Chemie, Keller Medical, Cytorsorb Europe Gmbh und Terumo Deutschland GmbH. A. El-Essawi: Beziehungen zu teils honorierten Lehr‑, Vortrags- und Beratungszwecken bestehen mit folgenden Firmen: Terumo und Medtronic. J. Gehron erhielt Vortragshonorare der Getinge Deutschland, Keller Medical und Terumo. A. Böning: Beziehungen zu teils honorierten Lehr‑, Vortrags‑, Studien- und Beratungszwecken bestehen mit folgenden Firmen: Zoll, Bayer, Maquet, Orion Pharma, Smith & Nephew, Somahlution, Spectranetics, Abbott, B. Braun, Nordic Pharma, Astra Zeneca, Quark Pharmaceuticals, Boston Scientific, Biom UP, AtriCure und Mitsubishi Pharma. W. Harringer und H. Hausmann. geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, A., El-Essawi, A., Gehron, J. et al. Systemminimalisierung im Rahmen der extrakorporalen Zirkulation. Z Herz- Thorax- Gefäßchir 34, 34–43 (2020). https://doi.org/10.1007/s00398-019-00348-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-019-00348-z

Schlüsselwörter

Keywords

Navigation