Skip to main content

Advertisement

Log in

Herstellung kardiovaskulären Gewebes aus dezellularisiertem biologischem Material

Cardiovascular tissue engineered from decellularized biological material

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Ziel der Arbeit

Die vorliegende Synopsis bietet einen Überblick über Untersuchungen der Autoren zur Herstellung funktionaler kardiovaskulärer Gewebe aus dezellularisiertem biologischem Material.

Material und Methoden

Eigene Untersuchungen zur Herstellung funktionaler kardiovaskulärer Gewebe werden präsentiert: 1) Ergebnisse nach Ross-Operation mit Verwendung tissue-engineerter Pulmonalklappen, 2) Entwicklung eines Modells zur Dezellularisierung von Schweineherzen, 3) Anwendung dieses Modells auf Aorten‑, Pulmonal‑, Mitral- und Trikuspidalklappen, 4) Rebesiedlung aller Klappen mit Endothelzellen der humanen Nabelschnur in einem selbst konstruierten Bioreaktor, 5) Anwendung desselben Modells zur Dezellularisierung von Aortenbogen sowie Untersuchung ihrer mechanischen Eigenschaften und Unterschiede zu herkömmlichen Dacrongrafts in vivo.

Ergebnisse

Tissue-engineerte Pulmonalklappen erzielten positive klinische Ergebnisse. Dezellularisierungsmodell und Bioreaktor zeigten eine nahezu komplette Dezellularisierung der Herzklappen mit darauffolgender fehlerfreier Rebesiedlung. Tissue-engineerte und native Aortengrafts weisen sehr ähnliche mechanische Eigenschaften auf, im Gegensatz zu Dacrongrafts.

Schlussfolgerung

Die Ergebnisse deuten auf ein großes Potenzial des Tissue-Engineering bei kardiovaskulären Erkrankungen hin. Vor allem die positiven klinischen Erfahrungen bei der Therapie von Klappenvitien, hier gezeigt am Beispiel der Pulmonalklappe, untermauern die zukünftige Bedeutung dieses Therapieansatzes. Fortwährende In-vivo-Studien sind notwendig, um die hier vorgestellten Kurzzeitergebnisse auf längerfristige Anwendbarkeit und somit auf ihren klinischen Stellenwert für die spätere humane Anwendung effektiv zu prüfen.

Abstract

Objectives

This work provides a detailed overview of investigations aimed at generating functional cardiovascular tissue from decellularized biological substances.

Material and methods

We present our investigations into producing functional cardiovascular tissue: 1) results following the Ross procedure performed using tissue-engineered pulmonary valves, 2) development of a decellularization model for porcine hearts, 3) application of this model to decellularize aortic, pulmonary, mitral and tricuspid valves, 4) recellularization of these heart valves with human umbilical cord endothelial cells in a bioreactor that we constructed ourselves, 5) application of the same model to decellularize whole aortic arches, investigation of the their mechanical characteristics and differences compared with conventional Dacron grafts in vivo.

Results

Tissue-engineered pulmonary valves showed positive clinical results. Our decellularization model and bioreactor was able to almost completely decellularize the heart valves, followed by complete recellularization. Tissue-engineered aortic arches have mechanical characteristics that are very similar to native arches, in contrast to Dacron grafts.

Conclusion

The results presented here suggest considerable potential for tissue engineering in the treatment of cardiovascular pathologies. This positive clinical experience with tissue-engineered pulmonary valves underpins the future significance of this therapeutic approach. However, chronic/long-term in vivo studies are needed in order to effectively verify the results presented here in terms of their clinical relevance to later use in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55:141–150

    Article  CAS  PubMed  Google Scholar 

  2. Bader A, Schilling T, Teebken OE et al (1998) Tissue engineering of heart valves – human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14:279–284

    Article  CAS  PubMed  Google Scholar 

  3. Bodnar E, Olsen EG, Florio R, Dobrin J (1986) Damage of porcine aortic valve tissue caused by the surfactant sodiumdodecylsulphate. Thorac Cardiovasc Surg 34:82–85. doi:10.1055/s-2007-1020381

    Article  CAS  PubMed  Google Scholar 

  4. Carr-White GS, Kilner PJ, Hon JK et al (2001) Incidence, location, pathology, and significance of pulmonary homograft stenosis after the Ross operation. Circulation 104:I16–20

    Article  CAS  PubMed  Google Scholar 

  5. da Costa FDA, Dohmen PM, Duarte D et al (2005) Immunological and echocardiographic evaluation of decellularized versus cryopreserved allografts during the Ross operation. Eur J Cardiothorac Surg 27:572–578. doi:10.1016/j.ejcts.2004.12.057

    Article  PubMed  Google Scholar 

  6. Dohmen PM, Lembcke A, Hotz H et al (2002) Ross operation with a tissue-engineered heart valve. Ann Thorac Surg 74:1438–1442

    Article  PubMed  Google Scholar 

  7. Dohmen PM, Lembcke A, Holinski S et al (2007) Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg 84:729–736. doi:10.1016/j.athoracsur.2007.04.072

    Article  PubMed  Google Scholar 

  8. Fabjan E, Hulzebos E, Mennes W, Piersma AH (2006) A category approach for reproductive effects of phthalates. Crit Rev Toxicol 36:695–726. doi:10.1080/10408440600894914

    Article  CAS  PubMed  Google Scholar 

  9. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683. doi:10.1016/j.biomaterials.2006.02.014

    CAS  PubMed  Google Scholar 

  10. Grauss RW, Hazekamp MG, Oppenhuizen F et al (2005) Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 27:566–571. doi:10.1016/j.ejcts.2004.12.052

    Article  PubMed  Google Scholar 

  11. Gulbins H, Goldemund A, Uhlig A et al (2003) Implantation of an autologously endothelialized homograft. J Thorac Cardiovasc Surg 126:890–891

    Article  PubMed  Google Scholar 

  12. Hodde JP, Record RD, Tullius RS, Badylak SF (2002) Retention of endothelial cell adherence to porcine-derived extracellular matrix after disinfection and sterilization. Tissue Eng 8:225–234. doi:10.1089/107632702753724996

    Article  CAS  PubMed  Google Scholar 

  13. Homann M, Haehnel JC, Mendler N et al (2000) Reconstruction of the RVOT with valved biological conduits: 25 years experience with allografts and xenografts. Eur J Cardiothorac Surg 17:624–630

    Article  CAS  PubMed  Google Scholar 

  14. Kadner A, Hoerstrup SP, Tracy J et al (2002) Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg 74:S1422–S1428

    Article  PubMed  Google Scholar 

  15. Kitaoka H, Kubo T, Okawa M et al (2010) Impact of metalloproteinases on left ventricular remodeling and heart failure events in patients with hypertrophic cardiomyopathy. Circ J 74:1191–1196

    Article  CAS  PubMed  Google Scholar 

  16. Konertz W, Angeli E, Tarusinov G et al (2011) Right ventricular outflow tract reconstruction with decellularized porcine xenografts in patients with congenital heart disease. J Heart Valve Dis 20:341–347

    PubMed  Google Scholar 

  17. L’Heureux N, Dusserre N, Konig G et al (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12:361–365. doi:10.1038/nm1364

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B Rev 15:353–370. doi:10.1089/ten.TEB.2009.0085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maeta H, Hori M (1985) Effects of a lack of aortic “Windkessel” properties on the left ventricle. Jpn Circ J 49:232–237

    Article  CAS  PubMed  Google Scholar 

  20. Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials 26:7481–7503. doi:10.1016/j.biomaterials.2005.05.057

    Article  CAS  PubMed  Google Scholar 

  21. Mekkaoui C, Rolland PH, Friggi A et al (2003) Pressure-flow loops and instantaneous input impedance in the thoracic aorta: another way to assess the effect of aortic bypass graft implantation on myocardial, brain, and subdiaphragmatic perfusion. J Thorac Cardiovasc Surg 125:699–710. doi:10.1067/mtc.2003.104

    Article  PubMed  Google Scholar 

  22. Mitsui T, Maeta H, Fukuda I et al (1986) Left ventricular hypertrophy due to aortic bypass grafting with a long prosthesis. J Cardiovasc Surg (Torino) 27:201–206

    CAS  Google Scholar 

  23. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16:2207–2216. doi:10.1089/ten.tea.2009.0602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Niklason LE, Gao J, Abbott WM et al (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  CAS  PubMed  Google Scholar 

  25. O’Brien MF, Goldstein S, Walsh S et al (1999) The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Semin Thorac Cardiovasc Surg 11:194–200

    Article  PubMed  Google Scholar 

  26. Ott HC, Matthiesen TS, Goh S‑K et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221. doi:10.1038/nm1684

    Article  CAS  PubMed  Google Scholar 

  27. Ott HC, Clippinger B, Conrad C et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16:927–933. doi:10.1038/nm.2193

    Article  CAS  PubMed  Google Scholar 

  28. Ptaszek LM, Mansour M, Ruskin JN, Chien KR (2012) Towards regenerative therapy for cardiac disease. Lancet 379:933–942. doi:10.1016/S0140-6736(12)60075-0

    Article  PubMed  Google Scholar 

  29. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Executive summary: heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125:188–197. doi:10.1161/CIR.0b013e3182456d46

    Article  PubMed  Google Scholar 

  30. Shinoka T, Ma PX, Shum-Tim D et al (1996) Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation 94:II164–II168

    CAS  PubMed  Google Scholar 

  31. Song JJ, Guyette JP, Gilpin SE et al (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19:646–651. doi:10.1038/nm.3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354(Suppl):SI32–SI34

    Article  PubMed  Google Scholar 

  33. Wainwright JM, Czajka CA, Patel UB et al (2010) Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods 16:525–532. doi:10.1089/ten.TEC.2009.0392

    Article  CAS  PubMed  Google Scholar 

  34. Weymann A, Dohmen PM, Grubitzsch H et al (2010) Clinical experience with expanded use of the Ross procedure: a paradigm shift? J Heart Valve Dis 19:279–285

    PubMed  Google Scholar 

  35. Weymann A, Loganathan S, Takahashi H et al (2011) Development and evaluation of a perfusion decellularization porcine heart model – generation of 3‑dimensional myocardial neoscaffolds. Circ J 75:852–860

    Article  PubMed  Google Scholar 

  36. Weymann A, Schmack B, Okada T et al (2013) Reendothelialization of human heart valve neoscaffolds using umbilical cord-derived endothelial cells. Circ J 77:207–216

    Article  PubMed  Google Scholar 

  37. Weymann A, Radovits T, Schmack B et al (2014) In vitro generation of atrioventricular heart valve neoscaffolds. Artif Organs 38:E118–E128. doi:10.1111/aor.12321

    Article  CAS  PubMed  Google Scholar 

  38. Weymann A, Radovits T, Schmack B et al (2014) Total aortic arch replacement: superior ventriculo-arterial coupling with decellularized allografts compared with conventional prostheses. PLOS ONE 9:e103588. doi:10.1371/journal.pone.0103588

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wilson GJ, Courtman DW, Klement P et al (1995) Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 60:S353–S358

    Article  CAS  PubMed  Google Scholar 

  40. Yacoub M, Rasmi NR, Sundt TM et al (1995) Fourteen-year experience with homovital homografts for aortic valve replacement. J Thorac Cardiovasc Surg 110:184–186. doi:10.1016/S0022-5223(05)80025-X

    Article  Google Scholar 

  41. Zeltinger J, Landeen LK, Alexander HG et al (2001) Development and characterization of tissue-engineered aortic valves. Tissue Eng 7:9–22. doi:10.1089/107632701300003250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Weymann FECTS.

Ethics declarations

Interessenkonflikt

A. Mashhour und A. Weymann geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethikkommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor. Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten, und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashhour, A., Weymann, A. Herstellung kardiovaskulären Gewebes aus dezellularisiertem biologischem Material. Z Herz- Thorax- Gefäßchir 31, 350–356 (2017). https://doi.org/10.1007/s00398-017-0158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-017-0158-x

Schlüsselwörter

Keywords

Navigation