Skip to main content

Advertisement

Log in

Hypothermie und ihr Einfluss auf das Tumorwachstum

Hypothermia and its effect on tumor growth

  • Übersichten
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Hintergrund

Abhängig vom Ausmaß der vorliegenden Erkrankung und des chirurgischen Eingriffs erfordern Operationen an der thorakalen Aorta Phasen des absoluten Kreislaufstillstands und zerebraler Minderperfusion. Seit Jahrzehnten wird hier die generalisierte Hypothermie zur Neuroprotektion eingesetzt. Inwiefern diese auch Einfluss auf die Entwicklung von Tumorerkrankungen nimmt, ist nach ersten Arbeiten von Temple Fay 1938 nicht hinreichend untersucht. Der hypotherme Kreislaufstillstand im Rahmen herzchirurgischer Operationen bietet die einzigartige Möglichkeit, heutzutage an die frühen Untersuchungen zur generalisierten Hypothermie anzuknüpfen.

Ziel der Arbeit

Es wird ein Überblick über die Entwicklung der generalisierten Hypothermie und kälteinduzierte zelluläre Veränderungen gegeben. Zudem wird der Einfluss der Hypothermie auf die Entwicklung von Tumorerkrankungen diskutiert.

Material und Methoden

Anhand ausgewählter Literaturarbeiten und ausgehend von eigenen Ergebnissen wird ein etwaiger Zusammenhang zwischen der generalisierten Hypothermie und dem Tumorwachstum beleuchtet.

Ergebnisse

In Abhängigkeit von Temperatur und Expositionszeit kann Kältestress ein Stagnieren des Zellzyklus, die Apoptose oder zelluläre Nekrose triggern. Auf der anderen Seite hat die generalisierte Hypothermie immunmodulatorische Auswirkungen auf die T‑Zell-Antwort, im Sinne einer Hemmung der zytotoxischen T‑Zell-Aktivität.

Schlussfolgerung

Sowohl eine Regression von Tumorerkrankungen durch Untergang vulnerabler Tumorvorstufen als auch eine Progression infolge hypothermer Immunsuppression sind denkbar. Hier sind weiterführende Untersuchungen nötig. Diese Fragestellungen würden sich an Patienten untersuchen lassen, die herz- und gefäßchirurgisch in Hypothermie operiert werden.

Abstract

Background

Depending on the extent of the disease and the surgical intervention, thoracic aortic surgery often requires a period of total circulatory arrest resulting in reduced cerebral perfusion. For decades generalized hypothermia has been applied for neuroprotection in these cases; however, the influence of generalized hypothermia on the development of tumor diseases has not been satisfactorily reviewed since the first experiments of the neurosurgeon Temple Fay in 1938. Hypothermic circulatory arrest during open heart surgery nowadays provides a unique chance to re-examine the early investigations on generalized hypothermia.

Objectives

The history of generalized hypothermia is outlined and cold-induced cellular changes are reviewed. Moreover, the influence of hypothermia on the development of tumor diseases is discussed.

Methods

Based on a literature search and own results a possible interaction between generalized hypothermia and tumor growth was examined.

Results

Depending on the temperature and time of exposure cold stress can trigger cell cycle arrest, apoptosis and cellular necrosis. On the other hand, generalized hypothermia has an immunomodulatory impact on the t‑cell-mediated immune response suppressing the activity of cytotoxic t‑cells.

Conclusion

The regression of tumor diseases due to destruction of vulnerable tumor precursor stages as well as a progression resulting from hypothermic immunosuppression are conceivable. Further investigation is required. These questions could be reviewed in patients undergoing cardiovascular surgery in deep hypothermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Apostolakis E, Akinosoglou K (2008) The methodologies of hypothermic circulatory arrest and of antegrade and retrograde cerebral perfusion for aortic arch surgery. Ann Thorac Cardiovasc Surg 14:138–148

    PubMed  Google Scholar 

  3. Arnott J (1851) On the treatment of cancer: by the regulated application of an anaesthetic temperature. Churchill, London

    Google Scholar 

  4. Beyersdorf F (2009) The use of controlled reperfusion strategies in cardiac surgery to minimize ischaemia/reperfusion damage. Cardiovasc Res 83:262–268

    Article  CAS  PubMed  Google Scholar 

  5. Bigelow WG, Lindsay WK, Greenwood WF (1950) Hypothermia. Ann Surg 132:849–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borst HG, Schaudig A, Rudolph W (1964) Arteriovenous fistula of the aortic arch: repair during deep hypothermia and circulatory arrest. J Thorac Cardiovasc Surg 48:443–447

    CAS  PubMed  Google Scholar 

  7. Brewer AK (1984) The high pH therapy for cancer tests on mice and humans. Pharmacol Biochem Behav 21(Suppl 1):1–5

    Article  PubMed  Google Scholar 

  8. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  CAS  PubMed  Google Scholar 

  9. Fay T (1959) Early experiences with local and generalized refrigeration of the human brain. J Neurosurg 16:239–259, 260

    Article  CAS  PubMed  Google Scholar 

  10. Gregory CD, Milner AE (1994) Regulation of cell survival in burkitt lymphoma: implications from studies of apoptosis following cold-shock treatment. Int J Cancer 57:419–426

    Article  CAS  PubMed  Google Scholar 

  11. Guray M (2006) Benign breast diseases: classification, diagnosis, and management. Oncologist 11:435–449

    Article  PubMed  Google Scholar 

  12. Henderson AR (1963) Temple Fay, M.D., unconformable crusader and harbinger of human refrigeration, 1895–1963. J Neurosurg 20:627–634

    Article  CAS  PubMed  Google Scholar 

  13. Igney FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71:907–920

    CAS  PubMed  Google Scholar 

  14. Lee S (2001) Hypothermia induces T‑cell production of immunosuppressive cytokines. J Surg Res 100:150–153

    Article  CAS  PubMed  Google Scholar 

  15. Leslie A, Carey FA, Pratt NR, Steele RJC (2002) The colorectal adenoma-carcinoma sequence. Br J Surg 89:845–860

    Article  CAS  PubMed  Google Scholar 

  16. McCarty MF, Whitaker J (2010) Manipulating tumor acidification as a cancer treatment strategy. Altern Med Rev 15:264–272

    PubMed  Google Scholar 

  17. National Library of Medicine (2016) Open-heart surgery, NIH, 1955. Photo by R. Perry. http://resource.nlm.nih.gov/101450972. Zugegriffen: 28. November 2016

    Google Scholar 

  18. Nduka CC, Puttick M, Coates P et al (2002) Intraperitoneal hypothermia during surgery enhances postoperative tumor growth. Surg Endosc 16:611–615

    Article  CAS  PubMed  Google Scholar 

  19. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    CAS  PubMed  Google Scholar 

  20. Nishiyama H, Itoh K, Kaneko Y et al (1997) A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J Cell Biol 137:899–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parkins CS, Dennis MF, Stratford MR et al (1995) Ischemia reperfusion injury in tumors: the role of oxygen radicals and nitric oxide. Cancer Res 55:6026–6029

    CAS  PubMed  Google Scholar 

  22. Rodríguez SA, Arias Fúnez F, Bueno Bravo C et al (2014) Cryotherapy for primary treatment of prostate cancer: intermediate term results of a prospective study from a single institution. Prostate Cancer 2014:1–11

    Article  Google Scholar 

  23. Sano ME, Smith LW (1942) The behavior of tumor cells in tissue culture subjected to reduced temperatures. Cancer Res 2:32–39

    Google Scholar 

  24. Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742

    Article  CAS  PubMed  Google Scholar 

  25. Spurrell EL, Lockley M (2014) Adaptive immunity in cancer immunology and therapeutics. Ecancermedicalscience. doi:10.3332/ecancer.2014.441

    PubMed  PubMed Central  Google Scholar 

  26. Stoney WS (2009) Evolution of cardiopulmonary bypass. Circulation 119:2844–2853

    Article  PubMed  Google Scholar 

  27. Taga K, Tosato G (1992) IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol 148:1143–1148

    CAS  PubMed  Google Scholar 

  28. Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci 109:227

    Article  CAS  PubMed  Google Scholar 

  29. Taunyane IC, Benk C, Beyersdorf F et al (2016) Preserved brain morphology after controlled automated reperfusion of the whole body following normothermic circulatory arrest time of up to 20 minutes. Eur J Cardiothorac Surg. doi:10.1093/ejcts/ezw186

    PubMed  Google Scholar 

  30. Theodorescu D (2004) Cancer cryotherapy: evolution and biology. Rev Urol 6:S9

    PubMed  PubMed Central  Google Scholar 

  31. Urban N (2016) Einfluss des hypothermen Kreislaufstillstands auf die Tumorinzidenz. Dissertation, Universität Freiburg i. Br.

  32. Veth R, Schreuder B, van Beem H et al (2005) Cryosurgery in aggressive, benign, and low-grade malignant bone tumours. Lancet Oncol 6:25–34

    Article  PubMed  Google Scholar 

  33. Yang C, Carrier F (2001) The UV-inducible RNA-binding protein A18 (A18 hnRNP) plays a protective role in the genotoxic stress response. J Biol Chem 276:47277–47284

    Article  CAS  PubMed  Google Scholar 

  34. Yoshikawa T, Kokura S, Oyamada H et al (1994) Antitumor effect of ischemia-reperfusion injury induced by transient embolization. Cancer Res 54:5033–5035

    CAS  PubMed  Google Scholar 

  35. van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13:1173–1184

    Article  PubMed  Google Scholar 

  36. Ziganshin BA, Elefteriades JA (2013) Deep hypothermic circulatory arrest. Ann Cardiothorac Surg 2:303–315

    PubMed  PubMed Central  Google Scholar 

  37. Ziganshin BA, Rajbanshi BG, Tranquilli M et al (2014) Straight deep hypothermic circulatory arrest for cerebral protection during aortic arch surgery: safe and effective. J Thorac Cardiovasc Surg 148:888–898

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Urban.

Ethics declarations

Interessenkonflikt

N. Urban und F. Beyersdorf geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. In diesem Beitrag wurde ausschließlich über bereits publizierte Studien berichtet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urban, N., Beyersdorf, F. Hypothermie und ihr Einfluss auf das Tumorwachstum. Z Herz- Thorax- Gefäßchir 31, 222–227 (2017). https://doi.org/10.1007/s00398-016-0132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-016-0132-z

Schlüsselwörter

Keywords

Navigation