Skip to main content

Advertisement

Log in

Myokardiales Tissue-Engineering

Von der Grundlagenforschung in die klinische Anwendung

Myocardial tissue engineering

From basic research to clinical application

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Die Ergebnisse adulter Stammzelltherapien am Herzen waren in der Summe ernüchternd. Über parakrine Effekte lassen sich nur sehr begrenzte Funktionsverbesserungen nach Myokardinfarkt erzielen, und eine substanzielle Bildung neuen Herzmuskels konnte nicht nachgewiesen werden. Interessant erscheint unterdessen die Möglichkeit, Bindegewebszellen des Herzens und einer Infarktnarbe direkt zu Kardiomyozyten umzuprogrammieren. Aufgrund nichtabschätzbarer Sicherheitsrisiken und der bisher sehr geringen Effizienz liegt die klinische Umsetzung allerdings bestenfalls noch in weiter Ferne. Große Fortschritte wurden im Gegensatz dazu bereits auf dem Gebiet der seit 2007 verfügbaren induzierten pluripotenten Stamm(iPS)-Zellen erzielt. Neuartige Differenzierungstechnologien erlauben damit nun erstmals die Herstellung der für eine klinische Zelltherapie notwendigen sehr großen Mengen an Herzmuskelzellen. Ob sich allerdings mit der Injektion solcher Zellen in das geschädigte Herz substanzielle Funktionsverbesserungen erzielen lassen, oder ob z. B. eine bereits existierende Infarktnarbe diese unmöglich macht, wird sich erst in den kommenden Jahren in geeigneten präklinischen Großtiermodellen zeigen. Auch gilt es, Risiken iPS-Zellen-basierter Therapien am Herzen, einschließlich Tumorbildung und transplantatinduzierter Arrhythmien, auszuschließen. Nach derzeitigem Stand der Forschung sind erste Phase-I-Studien zu iPS-Zellen-basierten kardialen Therapien durchaus für die kommenden 5 Jahre zu erwarten. Möglicherweise ist jedoch letztendlich der technisch schwierigere komplette Ersatz der Infarktnarbe durch vaskularisierten Herzmuskel, der über das Tissue-Engineering hergestellt wurde, die vielversprechendere Methode.

Abstract

The results of a variety of clinical trials that applied adult stem cells to the heart have been disappointing. Functional improvement after myocardial infarction was typically very limited and based on paracrine effects, whereas no substantial generation of new heart muscle could be demonstrated. Meanwhile, much more interest is directed towards the concept of direct in vivo reprogramming of cardiac fibroblasts; however, due to uncertain safety risks and the so far very low efficiency, clinical translation is still a long way off. In contrast, major progress has already been achieved in the field of induced pluripotent stem cells (iPSC), which became available in 2007. For the first time novel differentiation technologies now allow the generation of the large amounts of cardiomyocytes that will be required for clinical cell therapy. Whether the straightforward injection of these cells into an impaired heart will result in substantial functional improvement or whether for instance an already existing infarct scar may prevent this, remains to be investigated in suitable preclinical large animal models. Additionally, the potential risks of iPSC-based cardiac therapy, including tumor formation and transplant-induced arrhythmias, need to be addressed. Considering the current state of the art, first phase 1 clinical studies on iPSC-based heart repair can be expected within the next 5 years; however, it is possible that ultimately complete substitution of the infarct scar by tissue engineered vascularized heart muscle, which is technically more challenging, is the more promising approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Bar A, Dorfman SE, Fischer P et al (2010) The pro-angiogenic factor CCN1 enhances the re-endothelialization of biological vascularized matrices in vitro. Cardiovasc Res 85:806–813

    Article  PubMed  Google Scholar 

  2. Cao N, Huang Y, Zheng J et al (2016) Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352:1216–1220

    Article  CAS  PubMed  Google Scholar 

  3. Cathomen T, Schambach A (2010) Zinc-finger nucleases meet iPS cells: Zinc positive: tailored genome engineering meets reprogramming. Gene Ther 17:1–3

    Article  CAS  PubMed  Google Scholar 

  4. Chen JX, Krane M, Deutsch MA et al (2012) Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5. Circ Res 111:50–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chong JJ, Yang X, Don CW et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dahlmann J, Krause A, Moller L et al (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951

    Article  CAS  PubMed  Google Scholar 

  7. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000

    Article  CAS  PubMed  Google Scholar 

  8. Eschenhagen T, Fink C, Remmers U et al (1997) Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J 11:683–694

    CAS  PubMed  Google Scholar 

  9. Fu Y, Huang C, Xu X et al (2015) Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res 25:1013–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gruh I, Martin U (2009) Transdifferentiation of stem cells: a critical view. Adv Biochem Eng Biotechnol 114:73–106

    CAS  PubMed  Google Scholar 

  11. Ieda M, Fu JD, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang M, He B, Zhang Q et al (2010) Randomized controlled trials on the therapeutic effects of adult progenitor cells for myocardial infarction: meta-analysis. Expert Opin Biol Ther 10:667–680

    Article  CAS  PubMed  Google Scholar 

  13. Kawamura M, Miyagawa S, Miki K et al (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:S29–37

    Article  CAS  PubMed  Google Scholar 

  14. Kempf H, Kropp C, Olmer R et al (2015) Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc 10:1345–1361

    Article  CAS  PubMed  Google Scholar 

  15. Kempf H, Olmer R, Kropp C et al (2014) Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports. doi:10.1016/j.stemcr.2014.09.017

    PubMed  PubMed Central  Google Scholar 

  16. Kensah G, Roa LA, Dahlmann J et al (2013) Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro. Eur Heart J 34:1134–1146

    Article  CAS  PubMed  Google Scholar 

  17. Lian X, Zhang J, Azarin SM et al (2013) Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8:162–175

    Article  CAS  PubMed  Google Scholar 

  18. Liau B, Christoforou N, Leong KW et al (2011) Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 32:9180–9187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mauritz C, Martens A, Rojas SV et al (2011) Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J 32:2634–2641

    Article  CAS  PubMed  Google Scholar 

  20. Murry CE, Keller G (2008) Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132:661–680

    Article  CAS  PubMed  Google Scholar 

  21. Nunes SS, Song H, Chiang CK et al (2011) Stem cell-based cardiac tissue engineering. J Cardiovasc Transl Res 4:592–602

    Article  PubMed  Google Scholar 

  22. Ott HC, Matthiesen TS, Goh SK et al (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  CAS  PubMed  Google Scholar 

  23. Protze S, Khattak S, Poulet C et al (2012) A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J Mol Cell Cardiol 53:323–332

    Article  CAS  PubMed  Google Scholar 

  24. Ptaszek LM, Mansour M, Ruskin JN et al (2012) Towards regenerative therapy for cardiac disease. Lancet 379:933–942

    Article  PubMed  Google Scholar 

  25. Ronen D, Benvenisty N (2012) Genomic stability in reprogramming. Curr Opin Genet Dev 22:444–449

    Article  CAS  PubMed  Google Scholar 

  26. Schaaf S, Shibamiya A, Mewe M et al (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLOS ONE 6:e26397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shiba Y, Fernandes S, Zhu WZ et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song K, Nam YJ, Luo X et al (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  30. Tulloch NL, Muskheli V, Razumova MV et al (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Laake LW, Passier R, Doevendans PA et al (2008) Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res 102:1008–1010

    Article  PubMed  Google Scholar 

  32. Yi BA, Mummery CL, Chien KR (2013) Direct cardiomyocyte reprogramming: a new direction for cardiovascular regenerative medicine. Cold Spring Harb Perspect Med 3:a014050

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Cao N, Huang Y et al (2016) Expandable cardiovascular progenitor cells reprogrammed from fibroblasts. Cell Stem Cell 18:368–381

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann WH, Melnychenko I, Wasmeier G et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Martin.

Ethics declarations

Interessenkonflikt

U. Martin und A. Haverich geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, U., Haverich, A. Myokardiales Tissue-Engineering. Z Herz- Thorax- Gefäßchir 31, 200–205 (2017). https://doi.org/10.1007/s00398-016-0119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-016-0119-9

Schlüsselwörter

Keywords

Navigation