Advertisement

Einsatz eines Zytokinfilters in die Herz-Lungen-Maschine

Modifikation der postoperativen Entzündungsreaktion
  • A.-C. DeppeEmail author
  • C. Weber
  • Y.-H. Choi
  • T. Wahlers
Kardiotechnik/EKZ

Zusammenfassung

Hintergrund

Herzchirurgische Eingriffe mit der Herz-Lungen-Maschine (HLM) induzieren durch die Aktivierung multipler Entzündungskaskaden eine systemische Entzündungsreaktion. Diese kann in der postoperativen Phase das systemische inflammatorische Response-Syndrom (SIRS) auslösen. Die Aktivierung verschiedener Entzündungsmediatoren (Interleukin-6 [IL-6], Tumor-Nekrose-Faktor-α [TNF-α] etc.) kann postoperativ zu Komplikationen, Organdysfunktionen, Morbidität und Mortalität führen.

Ziel der Arbeit

Der Effekt der Adsorption von Zytokinen durch CytoSorb® an der HLM bei kardiochirurgischen Eingriffen soll evaluiert werden.

Material und Methode

In 3 Vergleichsgruppen von je 100 Patienten, die sich einer elektiven Myokardrevaskularisation unterziehen, werden insgesamt 300 Patienten verglichen: Myokardrevaskularisation mit Einsatz von HLM und CytoSorb® (Cytosorb-Gruppe), mit Einsatz der HLM („On-pump“-Gruppe) und ohne HLM („Off-pump“-Gruppe). Primärer Studienendpunkt ist die Entzündungsreaktion, gemessen im Serum mithilfe von IL-6, IL-8, TNF-α, C3/C4-Komplement, Leukozytenzahl und C‑reaktivem Protein. Sekundäre Endpunkte sind Dauer des Krankenhaus-/Intensivstationaufenthalts, Beatmungszeit, Dauer der Katecholamintherapie, Nierenfunktionsstörungen sowie „major adverse cardiac and cerebrovascular events“ (MACCE: Mortalität, Myokardinfarkt und zerebrovaskuläre Ereignisse).

Ergebnisse

Eine Interimsanalyse nach 60 % des geplanten Patientenkollektivs zeigt die ausgeglichene Verteilung der Patienten in die Gruppen. In der Cytosorb-Gruppe sind die IL-6-Spiegel reduziert, während die TNF-α-Spiegel vergleichbar sind. Tendenziell scheinen in dieser Gruppe Infektionen seltener aufzutreten.

Schlussfolgerung

Der Filter CytoSorb® ist gegenüber dem Standardverfahren sicher und ohne technische Schwierigkeiten anwendbar. CytoSorb® reduziert die Zytokinlast und scheint die Entzündungsreaktion abzumildern. Erste positive Tendenzen in klinischen Endpunkten müssen in weiteren Studien bestätigt werden.

Schlüsselwörter

Systemisches inflammatorisches Response-Syndrom Kardiopulmonarer Bypass Adsorption Infektion Wundheilung 

Use of cytokine filters in cardiopulmonary bypass machines

Modification of postoperative inflammatory responses

Abstract

Background

Cardiac surgical interventions using a cardiopulmonary bypass (CPB) machine induce a systemic inflammatory reaction due to activation of multiple inflammatory cascades. In the postoperative phase this can result in systemic inflammatory response syndrome (SIRS). The activation of various mediators of inflammation, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) can lead to postoperative complications, organ dysfunction, morbidity and mortality.

Aim

The effect of adsorption of cytokines using CytoSorb® with a CPB machine during cardiac surgery is evaluated.

Material and methods

This study is being conducted as a prospective, observational pilot study to determine the clinical impact of the use of an adsorption filter (CytoSorb®) on the serum levels of IL-6, IL-8 and TNF-alpha using a CPB machine. This pilot study includes 300 patients planned for elective surgical myocardial revascularization, partitioned into 3 groups each with 100 patients with on-pump myocardial revascularization with CytoSorb®, on-pump myocardial revascularization without CytoSorb® and off-pump myocardial revascularization. Primary outcome measures are the inflammatory response serum parameters IL-6, IL-8, TNF-alpha, complement C3/C4, leucocyte counts and C‑reactive protein. Secondary outcome measures are length of intensive care unit (ICU) and total hospital stay, duration of ventilation, duration of catecholamine therapy, kidney injury as well as major adverse cardiac and cerebrovascular events (MACCE, mortality, myocardial infarction and cerebrovascular events).

Results

An interim analysis after concluding 60 % of the planned patients revealed a well-balanced group allocation of patients. In the group with CytoSorb® the IL-6 values are decreased, whereas TNF-alpha values are comparable between the three groups. There seems to be a tendency for less infections in this group.

Conclusion

The use of the CytoSorb® filter during CPB is safe compared with the standard procedure and applicable without technical difficulties. CytoSorb® reduces the cytokine load and seems to attenuate the inflammatory response. Initial positive tendencies in improved clinical endpoints need to subsequently be confirmed in continuing studies.

Keywords

Systemic inflammatory response syndrome Cardioplumonary bypass Adsorption Infection Wound healing 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A.-C. Deppe, C. Weber, Y.-H. Choi und T. Wahlers geben an, dass kein Interessenkonflikt besteht.

Alle teilnehmenden Patienten wurden vor Einschluss in die Studie ausführlich aufgeklärt und willigten schriftlich ein. Die Studie wurde von der Ethikkommission der Uniklinik zu Köln genehmigt (13-230) und bei clinical.gov (NCT02213939) registriert. Die Studie wird unter Einhaltung aller geltenden Gesetze GCP konform [14] und den Prinzipien der Deklaration von Helsinki [15] entsprechend durchgeführt.

Literatur

  1. 1.
    Wan S, LeClerc JL, Vincent JL (1997) Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 112(3):676–692CrossRefPubMedGoogle Scholar
  2. 2.
    Landis RC et al (2014) Attenuating the Systemic Inflammatory Response to Adult Cardiopulmonary Bypass: A Critical Review of the Evidence Base. J Extra Corpor Technol 46(3):197–211PubMedPubMedCentralGoogle Scholar
  3. 3.
    Wacha H et al (2010) Perioperative Antibiotika-Prophylaxe. Chemother J 19:70–84Google Scholar
  4. 4.
    Whitlock RP et al (2015) Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet 386(10000):1243–1253CrossRefPubMedGoogle Scholar
  5. 5.
    Wittwer T et al (2013) Less invasive coronary artery revascularization with a minimized extracorporeal circulation system: preliminary results of a comparative study with off-pump-procedures. J Cardiothorac Surg 8(1):75CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Deppe AC et al (2015) Current evidence of coronary artery bypass grafting off-pump versus on-pump: a systematic review with meta-analysis of over 16 900 patients investigated in randomized controlled trials dagger. Eur J Cardiothorac Surg 49(4):1031–1041CrossRefPubMedGoogle Scholar
  7. 7.
    Rettig TC et al (2015) The systemic inflammatory response syndrome predicts short-term outcome after transapical transcatheter aortic valve implantation. J Cardiothorac Vasc Anesth 29(2):283–287CrossRefPubMedGoogle Scholar
  8. 8.
    Peng ZY et al (2014) Modulation of chemokine gradients by apheresis redirects leukocyte trafficking to different compartments during sepsis, studies in a rat model. Crit Care 18(4):R141CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Linden K et al (2015) Evaluation of the Cytosorb Hemoadsorptive Column in a PIG Model of Severe Smoke and Burn Injury. Shock 44(5):487–495CrossRefPubMedGoogle Scholar
  10. 10.
    Borgermann J et al (2007) Inflammatory response in on- versus off-pump myocardial revascularization: is ECC really the culprit? Thorac Cardiovasc Surg 55(8):473–480CrossRefPubMedGoogle Scholar
  11. 11.
    Mehta RL et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mangram AJ et al (1999) Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control 27(2):97–132 (quiz 133–4; discussion 96)CrossRefPubMedGoogle Scholar
  13. 13.
    Cruz DN et al (2009) Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA 301(23):2445–2452CrossRefPubMedGoogle Scholar
  14. 14.
    Volk N (2010) Klinische Studien von Medizinprodukten Übersicht und Ausblick der aktuellen Gesetzgebung und Normen. Kardiotechnik 1:12–19Google Scholar
  15. 15.
    Puri KS et al (2009) Declaration of Helsinki, 2008: implications for stakeholders in research. J Postgrad Med 55(2):131–134CrossRefPubMedGoogle Scholar
  16. 16.
    Harris PA et al (2009) Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42(2):377–381CrossRefPubMedGoogle Scholar
  17. 17.
    Beckmann A et al (2015) Cardiac Surgery in Germany during 2014: A report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 63(4):258–269CrossRefPubMedGoogle Scholar
  18. 18.
    Honore PM et al (2013) Newly designed CRRT membranes for sepsis and SIRS – a pragmatic approach for bedside intensivists summarizing the more recent advances: a systematic structured review. Asaio J 59(2):99–106CrossRefPubMedGoogle Scholar
  19. 19.
    Peng ZY, Carter MJ, Kellum JA (2008) Effects of hemoadsorption on cytokine removal and short-term survival in septic rats. Crit Care Med 36(5):1573–1577CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Schädler D et al (2013) A multicenter randomized controlled study of an extracorporeal cytokine hemoadsorption device in septic patient. Crit Care Med 17(Suppl 2):P62Google Scholar
  21. 21.
    Schädler D (2013) A multicenter randomized controlled study of an extracorporeal cytokine hemoadsorption device in septic patients. Crit Care 17(Suppl 2):P62PubMedCentralGoogle Scholar
  22. 22.
    Kellum JA et al (2008) Feasibility study of cytokine removal by hemoadsorption in brain-dead humans. Crit Care Med 36(1):268–272CrossRefPubMedGoogle Scholar
  23. 23.
    Musleh GS et al (2009) Association of IL6 and IL10 with renal dysfunction and the use of haemofiltration during cardiopulmonary bypass. Eur J Cardiothorac Surg 35(3):511–514CrossRefPubMedGoogle Scholar
  24. 24.
    Flikkema RM, Toledo-Pereyra LH (2012) Sample size determination in medical and surgical research. J Invest Surg 25(1):3–7CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A.-C. Deppe
    • 1
    Email author
  • C. Weber
    • 1
  • Y.-H. Choi
    • 1
    • 2
  • T. Wahlers
    • 1
  1. 1.Klinik und Poliklinik für Herz- und ThoraxchirurgieHerzzentrum, Uniklinik KölnKölnDeutschland
  2. 2.Cardiovascular Research Center CologneUniklinik KölnKölnDeutschland

Personalised recommendations