Skip to main content

Advertisement

Log in

Molekulare Mechanismen von Aortenerkrankungen

Molecular mechanisms of aortic diseases

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Aortenerkrankungen sind komplexe und herausfordernde chirurgische Krankheitsbilder, deren molekulare Grundlagen immer noch erforscht werden. Die häufigsten Aortopathien sind Aneurysmen der abdominellen und der thorakalen Aorta. Für beide Krankheitsbilder ist die einzige lebensverlängernde Therapie die chirurgische bzw. endovaskuläre Intervention. Um einen kausalen Therapieansatz zu ermöglichen, ist es essenziell, die molekularen Mechanismen dieser Aortopathien zu ergründen. Im vorliegenden Beitrag werden die aktuellen wissenschaftlichen Erkenntnisse hierzu skizziert. Häufige Ursachen für thorakale Aortenaneurysmen sind syndromale (z. B. Marfan-Syndrom) und nichtsyndromale (z. B. ACTA-2-Mutationen, bikuspidale Aortenklappen) Erkrankungen. Bei beiden finden sich die für eine Aneurysmabildung ursächlichen Faktoren in den lamellaren Einheiten der Aorta. Hier spielen sich alle Prozesse ab, die für die Stabilität der Aortenwand verantwortlich sind, z. B. Auf- und Abbau der Extrazellularmatrix oder Signalkaskaden in den aortalen glatten Muskelzellen. Bei den syndromalen Bindegewebserkankungen sind für das Marfan-Syndrom Mutationen im Fibrillin-1-Gen und eine Dysregulation der „Transforming-growth-factor“(TGF)-β-Signalkaskade sowie für das Loeys-Dietz-Syndrom Mutationen im TGF-β-Rezeptor ursächlich. Eine genetische Komponente bikuspidaler Aortenklappen wird ebenso diskutiert wie die mechanische Schädigung der Aortenwand durch eine veränderte Zirkulation. Die nichtsyndromalen familiären Aortenaneurysmen weisen verschiedene genetische Komponenten auf. Daher zielen die meisten experimentellen, kausalen Therapien auf die Kontrolle der dysregulierten TGF-β-Signalkaskade ab. Die vielversprechendsten Optionen sind Sartane, Statine und Tetrazykline.

Abstract

Aortic diseases are complex and surgically challenging disorders for which the molecular pathways are still under investigation. The most common aortopathies are abdominal and thoracic aneurysms but the only life extending treatment for both entities is a surgical or endovascular intervention. For a causal therapeutic approach to these life-threatening diseases it is necessary to understand the underlying molecular mechanisms. Common causes of aortopathies are syndromic, e.g. Marfan syndrome and non-syndromic disorders, e.g. ACTA2 mutations and bicuspid aortic valves. In both subgroups the processes which cause aneurysm development can be found in the lamellar unit, which consists of collagen fibers, extracellular matrix and smooth muscle cells and harbors all factors, which are vital for stability of the aortic wall. The underlying molecular mechanisms in syndromic connective tissue diseases, such as Marfan syndrome are mutations in the fibrillin 1 gene and dysregulation of the transforming growth factor β (TGF-β) signaling pathway and in Loeys-Dietz syndrome mutations in TGF-β receptor genes. The causes of biscuspid aortic valves are still under debate but evidence suggests both mechanical blood flow changes and genetic factors are responsible. The non-syndromic familial aortic aneurysms show multiple different genetic mutations which can cause either a destruction of aortic smooth muscle cells or a dysregulation of the TGF-β signaling pathway, similar to syndromic disorders; therefore, most of the still experimental drugs target the TGF-β pathway. The most promising options are angiotensin receptor blockers, statins or tetracyclines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Stary HC et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15(9):1512–1531

    Article  CAS  PubMed  Google Scholar 

  2. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451(7181):943–948

    Article  CAS  PubMed  Google Scholar 

  3. Hiratzka LF et al (2010) ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Catheter Cardiovasc Interv 76(2):E43–86

    Article  PubMed  Google Scholar 

  4. Davis FM, Rateri DL, Daugherty A (2015) Abdominal aortic aneurysm: novel mechanisms and therapies. Curr Opin Cardiol 30(6):566–573

    Article  PubMed  Google Scholar 

  5. Saratzis A, Bown MJ (2014) The genetic basis for aortic aneurysmal disease. Heart 100(12):916–922

    Article  CAS  PubMed  Google Scholar 

  6. Clark JM, Glagov S (1985) Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis 5(1):19–34

    Article  CAS  PubMed  Google Scholar 

  7. El-Hamamsy I, Yacoub MH (2009) Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol 6(12):771–786

    Article  CAS  PubMed  Google Scholar 

  8. Zatina MA et al (1984) Role of medial lamellar architecture in the pathogenesis of aortic aneurysms. J Vasc Surg 1(3):442–448

    Article  CAS  PubMed  Google Scholar 

  9. Neptune ER et al (2003) Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33(3):407–411

    Article  CAS  PubMed  Google Scholar 

  10. Pomianowski P, Elefteriades JA (2013) The genetics and genomics of thoracic aortic disease. Ann Cardiothorac Surg 2(3):271–279

    PubMed  PubMed Central  Google Scholar 

  11. Boileau C et al (2012) TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet 44(8):916–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marshall LM et al (2013) Thoracic aortic aneurysm frequency and dissection are associated with fibrillin-1 fragment concentrations in circulation. Circ Res 113(10):1159–1168

    Article  CAS  PubMed  Google Scholar 

  13. Prakash SK et al (2014) A roadmap to investigate the genetic basis of bicuspid aortic valve and its complications: insights from the International BAVCon (Bicuspid Aortic Valve Consortium. J Am Coll Cardiol 64(8):832–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dietz HC et al (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352(6333):337–339

    Article  CAS  PubMed  Google Scholar 

  15. Loeys BL et al (2010) The revised Ghent nosology for the Marfan syndrome. J Med Genet 47(7):476–485

    Article  CAS  PubMed  Google Scholar 

  16. Bentall H, De Bono A (1968) A technique for complete replacement of the ascending aorta. Thorax 23(4):338–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. David TE, Feindel CM (1992) An aortic valve-sparing operation for patients with aortic incompetence and aneurysm of the ascending aorta. J Thorac Cardiovasc Surg 103(4):617–621

    CAS  PubMed  Google Scholar 

  18. Pearson GD et al (2008) Report of the National Heart, Lung, and Blood Institute and National Marfan Foundation Working Group on research in Marfan syndrome and related disorders. Circulation 118(7):785–791

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dietz HC et al (2005) Recent progress towards a molecular understanding of Marfan syndrome. Am J Med Genet C Semin Med Genet 139 C(1):4–9

    Article  Google Scholar 

  20. Booms P et al (2006) A fibrillin-1-fragment containing the elastin-binding-protein GxxPG consensus sequence upregulates matrix metalloproteinase-1: biochemical and computational analysis. J Mol Cell Cardiol 40(2):234–246

    Article  CAS  PubMed  Google Scholar 

  21. Guo G et al (2006) Induction of macrophage chemotaxis by aortic extracts of the mgR Marfan mouse model and a GxxPG-containing fibrillin-1 fragment. Circulation 114(17):1855–1862

    Article  CAS  PubMed  Google Scholar 

  22. Robinson PN et al (2006) The molecular genetics of Marfan syndrome and related disorders. J Med Genet 43(10):769–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chung AW et al (2008) Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ Res 102(8):e73–e85

    Article  CAS  PubMed  Google Scholar 

  24. McLoughlin D et al (2011) Pravastatin reduces Marfan aortic dilation. Circulation 124(11 Suppl):S168–S173

    Article  CAS  PubMed  Google Scholar 

  25. Habashi JP et al (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312(5770):117–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Milleron O et al (2015) Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J 36(32):2160–2166

    Article  PubMed  Google Scholar 

  27. Schwill S et al (2013) The fibrillin-1 hypomorphic mgR/mgR murine model of Marfan syndrome shows severe elastolysis in all segments of the aorta. J Vasc Surg 57(6):1628–1636.e1-3

    Article  PubMed  Google Scholar 

  28. Loeys BL et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37(3):275–281

    Article  CAS  PubMed  Google Scholar 

  29. Van Hemelrijk C, Renard M, Loeys B (2010) The Loeys-Dietz syndrome: an update for the clinician. Curr Opin Cardiol 25(6):546–551

    Article  PubMed  Google Scholar 

  30. Gallo EM et al (2014) Angiotensin II-dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J Clin Invest 124(1):448–460

    Article  CAS  PubMed  Google Scholar 

  31. Sandor GG et al (2015) A randomized, double blind pilot study to assess the effects of losartan vs. atenolol on the biophysical properties of the aorta in patients with Marfan and Loeys-Dietz syndromes. Int J Cardiol 179:470–475

    Article  PubMed  Google Scholar 

  32. Abdulkareem N, Smelt J, Jahangiri M (2013) Bicuspid aortic valve aortopathy: genetics, pathophysiology and medical therapy. Interact Cardiovasc Thorac Surg 17(3):554–559

    Article  PubMed  PubMed Central  Google Scholar 

  33. Michelena HI et al (2011) Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 306(10):1104–1112

    Article  CAS  PubMed  Google Scholar 

  34. Biner S et al (2009) Aortopathy is prevalent in relatives of bicuspid aortic valve patients. J Am Coll Cardiol 53(24):2288–2295

    Article  PubMed  PubMed Central  Google Scholar 

  35. Padang R et al (2012) Rare non-synonymous variations in the transcriptional activation domains of GATA5 in bicuspid aortic valve disease. J Mol Cell Cardiol 53(2):277–281

    Article  CAS  PubMed  Google Scholar 

  36. Mohamed SA et al (2006) Novel missense mutations (p.T596  M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun 345(4):1460–1465

    Article  CAS  PubMed  Google Scholar 

  37. Joziasse IC et al (2011) Bicuspid stenotic aortic valves: clinical characteristics and morphological assessment using MRI and echocardiography. Neth Heart J 19(3):119–125

    Article  PubMed  PubMed Central  Google Scholar 

  38. Itagaki S et al (2015) Long-term risk for aortic complications after aortic valve replacement in patients with bicuspid aortic valve versus Marfan syndrome. J Am Coll Cardiol 65(22):2363–2369

    Article  PubMed  Google Scholar 

  39. Gomez D et al (2009) Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. J Pathol 218(1):131–142

    Article  CAS  PubMed  Google Scholar 

  40. Paloschi V et al (2015) Aneurysm development in patients with a bicuspid aortic valve is not associated with transforming growth factor-β activation. Arterioscler Thromb Vasc Biol 35(4):973–980

    Article  CAS  PubMed  Google Scholar 

  41. LeMaire SA et al (2005) Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J Surg Res 123(1):40–48

    Article  CAS  PubMed  Google Scholar 

  42. Itagaki S, Chiang Y, Tang GH (2015) Why does the bicuspid aortic valve keep eluding us? Cardiol Rev. PMID: 25688662

  43. Kallenbach K et al (2005) Decade of aortic valve sparing reimplantation: are we pushing the limits too far? Circulation 112(9 Suppl):1253–1259

    PubMed  Google Scholar 

  44. Nicod P et al (1989) Familial aortic dissecting aneurysm. J Am Coll Cardiol 13(4):811–819

    Article  CAS  PubMed  Google Scholar 

  45. Guo DC et al (2009) Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet 84(5):617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu L et al (2006) Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 38(3):343–349

    Article  CAS  PubMed  Google Scholar 

  47. Imai Y et al (2015) A deletion mutation in myosin heavy chain 11 causing familial thoracic aortic dissection in two Japanese pedigrees. Int J Cardiol 195:290–292

    Article  PubMed  Google Scholar 

  48. Pannu H, Tran-Fadulu V, Milewicz DM (2005) Genetic basis of thoracic aortic aneurysms and aortic dissections. Am J Med Genet C Semin Med Genet 139 C(1):10–16

    Article  Google Scholar 

  49. Inamoto S et al (2010) TGFBR2 mutations alter smooth muscle cell phenotype and predispose to thoracic aortic aneurysms and dissections. Cardiovasc Res 88(3):520–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nistala H et al (2010) Differential effects of alendronate and losartan therapy on osteopenia and aortic aneurysm in mice with severe Marfan syndrome. Hum Mol Genet 19(24):4790–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moberg K et al (2012) The Ghent Marfan Trial-a randomized, double-blind placebo controlled trial with losartan in Marfan patients treated with β-blockers. Int J Cardiol 157(3):354–358

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zaradzki.

Ethics declarations

Interessenkonflikt

M. Zaradzki und K. Kallenbach geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaradzki, M., Kallenbach, K. Molekulare Mechanismen von Aortenerkrankungen. Z Herz- Thorax- Gefäßchir 30, 198–203 (2016). https://doi.org/10.1007/s00398-016-0068-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-016-0068-3

Schlüsselwörter

Keywords

Navigation