Skip to main content

Advertisement

Log in

Staphylococcus-aureus-Adhärenz, Wirtszellinvasion und Persistenz

Bakterielle Strategien zur Etablierung destruktiver und chronischer Infektionen

Staphylococcus aureus adherence, host cell invasion, and persistence

Bacterial strategies for the establishment of destructive and chronic infections

  • Nachbardisziplinen
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Staphylococcus aureus ist einer der häufigsten Verursacher endovaskulärer Infektionen, die zum Teil schwierig zu behandeln sind und eine hohe Mortalitätsrate aufweisen. Die Ursache dafür liegt nicht nur an der zunehmenden Ausbreitung von Methicillin-resistenten S.-aureus(MRSA)-Stämmen, sondern ist durch die Vielzahl von S.-aureus-Virulenzfaktoren und Infektionsstrategien begründet. Dazu gehört die Fähigkeit von S.  aureus, an Wirtsstrukturen zu adhärieren, einen Biofilm zu bilden und in Wirtszellen einzudringen. Nach Wirtszellinvasion können die Bakterien einerseits proinflammatorische und gewebezerstörende Wirkungen verursachen, andererseits können sie sich auch so verändern, dass sie eine Art Schlafzustand („small-colony variants“, SCVs), annehmen, um über lange Zeit in den Wirtszellen zu persistieren. Bei Verlassen der intrazellulären Lokalisation werden die Bakterien meist sehr schnell wieder hochvirulent, wodurch sie erneut eine Infektion auslösen können. Für eine erfolgreiche Diagnose und Therapie sollte daher gerade bei chronischen Infektionen die SCV-Bildung bedacht und solche Antibiotika zur Therapie gewählt werden, die in Biofilm und intrazellulär penetrieren können.

Abstract

Staphylococcus aureus is a frequent cause of endovascular infections, which are often difficult to treat and still have a high mortality rate. The reason for this is not only the increasing spread of methicillin-resistant S. aureus (MRSA) strains, but is also based in the multiplicity of virulence factors and infection strategies of the bacteria. S. aureus can adhere to host structures, can form biofilms, and can invade host cells. After host cell invasion, the bacteria can induce pro-inflammatory and tissue-destructive effects. On the other hand, the bacteria can also change their phenotypes to small colony variants (SCVs), a state of dormancy, to survive within the host cells for long periods of time. However, when the bacteria leave the intracellular location, they often rapidly revert to their fully aggressive phenotype, which can induce a new episode of acute infection. Thus, to diagnose and treat S. aureus infections successfully, the formation of SCVs should not be overlooked and antimicrobial compounds that penetrate the biofilm and also act intracellularly should be selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Allard C, Carignan A, Bergevin M et al (2008) Secular changes in incidence and mortality associated with Staphylococcus aureus bacteraemia in Quebec, Canada, 1991–2005. Clin Microbiol Infect 14(5):421–428

    Article  PubMed  CAS  Google Scholar 

  2. Amano A, Nakagawa I, Yoshimori T (2006) Autophagy in innate immunity against intracellular bacteria. J Biochem 140(2):161–166

    Article  PubMed  CAS  Google Scholar 

  3. Balwit JM, Langevelde P van, Vann JM et al (1994) Gentamicin-resistant menadione and hemin auxotrophic Staphylococcus aureus persist within cultured endothelial cells. J Infect Dis 170(4):1033–1037

    Article  PubMed  CAS  Google Scholar 

  4. Bandyk DF (2008) Vascular surgical site infection: risk factors and preventive measures. Semin Vasc Surg 21(3):119–123

    Article  PubMed  Google Scholar 

  5. Bhakdi S, Mannhardt U, Muhly M et al (1989) Human hyperimmune globulin protects against the cytotoxic action of staphylococcal alpha-toxin in vitro and in vivo. Infect Immun 57(10):3214–3220

    PubMed  CAS  Google Scholar 

  6. Bhakdi S, Tranum-Jensen J (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55(4):733–751

    PubMed  CAS  Google Scholar 

  7. Boyer L, Doye A, Rolando M et al (2006) Induction of transient macroapertures in endothelial cells through RhoA inhibition by Staphylococcus aureus factors. J Cell Biol 173(5):809–819

    Article  PubMed  CAS  Google Scholar 

  8. Brewer AR, Stromberg BV (1990) In vitro adherence of bacteria to prosthetic grafting materials. Ann Plast Surg 24(2):134–138

    Article  PubMed  CAS  Google Scholar 

  9. Bubeck WJ, Bae T, Otto M et al (2007) Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 13(12):1405–1406

    Article  Google Scholar 

  10. Bubeck WJ, Schneewind O (2008) Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med 205(2):287–294

    Article  Google Scholar 

  11. Campoy E, Colombo MI (2009) Autophagy in intracellular bacterial infection. Biochim Biophys Acta 1793(9):1465–1477

    Article  PubMed  CAS  Google Scholar 

  12. Cheung AL, Bayer AS, Zhang G et al (2004) Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 40(1):1–9

    Article  PubMed  CAS  Google Scholar 

  13. David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687

    Article  PubMed  CAS  Google Scholar 

  14. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5(6):527–549

    Article  PubMed  CAS  Google Scholar 

  15. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  PubMed  CAS  Google Scholar 

  16. Ellington JK, Reilly SS, Ramp WK et al (1999) Mechanisms of Staphylococcus aureus invasion of cultured osteoblasts. Microb Pathog 26(6):317–323

    Article  PubMed  CAS  Google Scholar 

  17. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3(12):948–958

    Article  PubMed  CAS  Google Scholar 

  18. Foster TJ, Hook M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6(12):484–488

    Article  PubMed  CAS  Google Scholar 

  19. Fowler T, Wann ER, Joh D et al (2000) Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins. Eur J Cell Biol 79(10):672–679

    Article  PubMed  CAS  Google Scholar 

  20. Greer RB, Rosenberg AE (1993) Case 6-1993 – a 69 year-old woman with a sclerotic lesion of the femur and pulmonary nodules. N Engl J Med 328:422–428

    Article  Google Scholar 

  21. Grundmeier M, Tuchscherr L, Brück M et al (2010) Staphylococcal strains vary greatly in their ability to induce an inflammatory response in endothelial cells. J Infect Dis 201(6):871–880

    Article  PubMed  Google Scholar 

  22. Haslinger-Löffler B, Kahl BC, Grundmeier M et al (2005) Multiple virulence factors are required for Staphylococcus aureus-induced apoptosis in endothelial cells. Cell Microbiol 7(8):1087–1097

    Article  PubMed  Google Scholar 

  23. Haslinger-Löffler B, Wagner B, Brück M et al (2006) Staphylococcus aureus induces caspase-independent cell death in human peritoneal mesothelial cells. Kidney Int 70(6):1089–1098

    Article  PubMed  Google Scholar 

  24. Hill EE, Peetermans WE, Vanderschueren S et al (2008) Methicillin-resistant versus methicillin-sensitive Staphylococcus aureus infective endocarditis. Eur J Clin Microbiol Infect Dis 27(6):445–450

    Article  PubMed  CAS  Google Scholar 

  25. Kahl BC, Duebbers A, Lubritz G et al (2003) Population dynamics of persistent Staphylococcus aureus isolated from the airways of cystic fibrosis patients during a 6-year prospective study. J Clin Microbiol 41(9):4424–4427

    Article  PubMed  CAS  Google Scholar 

  26. Kahl BC, Goulian M, Wamel W van et al (2000) Staphylococcus aureus RN6390 replicates and induces apoptosis in a pulmonary epithelial cell line. Infect Immun 68(9):5385–5392

    Article  PubMed  CAS  Google Scholar 

  27. Kallen AJ, Jernigan JA, Patel PR (2011) Decolonization to prevent infections with Staphylococcus aureus in patients undergoing hemodialysis: a review of current evidence. Semin Dial 24(5):533–539

    Article  PubMed  Google Scholar 

  28. Kern WV (2010) Management of Staphylococcus aureus bacteremia and endocarditis: progresses and challenges. Curr Opin Infect Dis 23(4):346–358

    Article  PubMed  Google Scholar 

  29. Kipp F, Ziebuhr W, Becker K et al (2003) Detection of Staphylococcus aureus by 16S rRNA directed in situ hybridisation in a patient with a brain abscess caused by small colony variants. J Neurol Neurosurg Psychiatry 74(7):1000–1002

    Article  PubMed  CAS  Google Scholar 

  30. Kluytmans J, Belkum A van, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10(3):505–520

    PubMed  CAS  Google Scholar 

  31. Lazarevic V, Beaume M, Corvaglia A et al (2011) Epidemiology and virulence insights from MRSA and MSSA genome analysis. Future Microbiol 6(5):513–532

    Article  PubMed  CAS  Google Scholar 

  32. Legout L, Sarraz-Bournet B, D’Elia PV et al (2011) Characteristics and prognosis in patients with prosthetic vascular graft infection: a prospective observational cohort study. Clin Microbiol Infect 18(4):352–358

    Article  PubMed  Google Scholar 

  33. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532

    Article  PubMed  CAS  Google Scholar 

  34. Mermel LA, Farr BM, Sherertz RJ et al (2001) Guidelines for the management of intravascular catheter-related infections. J Intraven Nurs 24(3):180–205

    PubMed  CAS  Google Scholar 

  35. Mitchell G, Brouillette E, Seguin DL et al (2010) A role for sigma factor B in the emergence of Staphylococcus aureus small-colony variants and elevated biofilm production resulting from an exposure to aminoglycosides. Microb Pathog 48(1):18–27

    Article  PubMed  CAS  Google Scholar 

  36. Patel AH, Nowlan P, Weavers ED et al (1987) Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect Immun 55(12):3103–3110

    PubMed  CAS  Google Scholar 

  37. Perlroth J, Kuo M, Tan J et al (2008) Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: a systematic review of the literature. Arch Intern Med 168(8):805–819

    Article  PubMed  CAS  Google Scholar 

  38. Proctor RA, Balwit JM, Vesga O (1994) Variant subpopulations of Staphylococcus aureus as cause of persistent and recurrent infections. Infect Agents Dis 3(6):302–312

    PubMed  CAS  Google Scholar 

  39. Proctor RA, Langevelde P van, Kristjansson M et al (1995) Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin Infect Dis 20(1):95–102

    Article  PubMed  CAS  Google Scholar 

  40. Proctor RA, Eiff C von, Kahl BC et al (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4(4):295–305

    Article  PubMed  CAS  Google Scholar 

  41. Ragle BE, Bubeck WJ (2009) Anti-alpha-hemolysin monoclonal antibodies mediate protection against Staphylococcus aureus pneumonia. Infect Immun 77(7):2712–2718

    Article  PubMed  CAS  Google Scholar 

  42. Saleem BR, Meerwaldt R, Tielliu IF et al (2010) Conservative treatment of vascular prosthetic graft infection is associated with high mortality. Am J Surg 200(1):47–52

    Article  PubMed  Google Scholar 

  43. Schaaff F, Bierbaum G, Baumert N et al (2003) Mutations are involved in emergence of aminoglycoside-induced small colony variants of Staphylococcus aureus. Int J Med Microbiol 293(6):427–435

    Article  PubMed  CAS  Google Scholar 

  44. Schaffer AC, Lee JC (2008) Vaccination and passive immunisation against Staphylococcus aureus. Int J Antimicrob Agents 32(Suppl 1):71–78

    Article  Google Scholar 

  45. Schnaith A, Kashkar H, Leggio SA et al (2007) Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282(4):2695–2706

    Article  PubMed  CAS  Google Scholar 

  46. Sinha B, Fraunholz M (2010) Staphylococcus aureus host cell invasion and post-invasion events. Int J Med Microbiol 300(2–3):170–175

    Google Scholar 

  47. Soong G, Martin FJ, Chun J et al (2011) Staphylococcus aureus protein A mediates invasion across airway epithelial cells through activation of RhoA GTPase signaling and proteolytic activity. J Biol Chem 286(41):35891–35898

    Article  PubMed  CAS  Google Scholar 

  48. Tang HJ, Chen CC, Cheng KC et al (2012) In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother 67(4):944–950

    Article  PubMed  CAS  Google Scholar 

  49. Tornos P, Gonzalez-Alujas T, Thuny F et al (2011) Infective endocarditis: the European viewpoint. Curr Probl Cardiol 36(5):175–222

    Article  PubMed  Google Scholar 

  50. Tuchscherr L, Heitmann V, Hussain M et al (2010) Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis 202:1031–1040

    Article  PubMed  Google Scholar 

  51. Tuchscherr L, Medina E, Hussain M et al (2011) Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 3:129–141

    Article  PubMed  CAS  Google Scholar 

  52. Rijen MM van, Kluytmans JA (2008) New approaches to prevention of staphylococcal infection in surgery. Curr Opin Infect Dis 21(4):380–384

    Article  PubMed  Google Scholar 

  53. Van BF, Barcia-Macay M, Lemaire S et al (2006) Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr Opin Drug Discov Devel 9(2):218–230

    Google Scholar 

  54. Eiff C von, Becker K, Machka K et al (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 344(1):11–16

    Article  Google Scholar 

  55. Eiff C von, Peters G, Heilmann C (2002) Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2(11):677–685

    Article  Google Scholar 

  56. Westphal N, Plicht B, Naber C (2009) Infective endocarditis–prophylaxis, diagnostic criteria, and treatment. Dtsch Arztebl Int 106(28–29):481–489

    Google Scholar 

  57. Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112(11):1620–1625

    PubMed  CAS  Google Scholar 

  58. Ziegler C, Goldmann O, Hobeika E et al (2011) The dynamics of T cells during persistent Staphylococcus aureus infection: from antigen-reactivity to in vivo anergy. EMBO Mol Med 3(11):652–666

    Article  PubMed  CAS  Google Scholar 

  59. Zimmerli W, Widmer AF, Blatter M et al (1998) Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA 279(19):1537–1541

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Löffler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löffler, B. Staphylococcus-aureus-Adhärenz, Wirtszellinvasion und Persistenz. Z Herz- Thorax- Gefäßchir 26, 253–258 (2012). https://doi.org/10.1007/s00398-012-0943-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-012-0943-5

Schlüsselwörter

Keywords

Navigation