Skip to main content

Advertisement

Log in

Molekulargenetische Grundlagen des Vorhofseptumdefekts

Molecular genetic principles of atrial septal defects

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Angeborene Herzfehler (AHF) sind die häufigsten angeborenen Missbildungen beim Menschen. Ungeachtet der Fortschritte in Diagnostik und Behandlung von AHF blieben die molekularen Mechanismen ihrer Entstehung bislang weitestgehend unklar. Neue Technologien in der Generierung genetischer Tiermodelle ermöglichten in jüngster Vergangenheit detaillierte Einblicke in die molekulargenetischen Vorgänge während der Herzentwicklung. Parallel dazu führten humangenetische Studien zur Identifizierung genetischer Mutationen, welche zu einer familiären Häufung von AHF führen. Während zunächst insbesondere Transkriptionsfaktoren bei der Entstehung von AHF eine Rolle zu spielen schienen, zeigen neuere Untersuchungen, dass auch Mutationen in strukturellen Genen des Sarkomers an der Entstehung von AHF beteiligt sind. Genetisch bedingte AHF beim Menschen bieten die einzigartige Möglichkeit, die molekularen Entstehungsmechanismen dieser komplexen Missbildungen besser zu verstehen. Dieser Artikel soll einen Überblick über die jüngsten Erkenntnisse der molekulargenetischen Ursachen von AHF unter besonderer Berücksichtigung des Vorhofseptumdefekts vom Secundum-Typ geben.

Abstract

Congenital heart defects (CHD) are the most common congenital defects in humans. Despite advances in the diagnosis and treatment of CHD, the molecular mechanisms concerning their development are still not clearly understood. New technologies in the generation of genetic animal models have recently made it possible to obtain a detailed view into the molecular genetic processes during development of the heart. Parallel to this, human genetic studies have made it possible to identify genetic mutations that lead to familial clustering of CHD. Initially transcription factors appeared to play a role in the development of CHD; however, more recent studies have also shown that mutations in structural genes of the sarcomere participate in the development of CHD. Hereditary CHDs offer the possibility to understand the molecular developmental mechanisms of these complex defects. The aim of this article is to provide an overview of the most recent advances in the molecular genetic causes of CHD with special consideration of secundum atrial septal defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Basson CT, Bachinsky DR, Lin RC et al (1997) Mutations in human TBX5 cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 15:30–35

    Article  PubMed  CAS  Google Scholar 

  2. Basson CT, Huang T, Lin RC et al (1999) Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A 96:2919–2924

    Article  PubMed  CAS  Google Scholar 

  3. Benson DW, Silberbach GM, Kavanaugh-McHugh A et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573

    Article  PubMed  CAS  Google Scholar 

  4. Biben C, Weber R, Kesteven S et al (2000) Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2–5. Circ Res 87:888–895

    PubMed  CAS  Google Scholar 

  5. Brassington AM, Sung SS, Toydemir RM et al (2003) Expressivity of Holt-Oram syndrome is not predicted by TBX5 genotype. Am J Hum Genet 73:74–85

    Article  PubMed  CAS  Google Scholar 

  6. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451:943–948

    Article  PubMed  CAS  Google Scholar 

  7. Budde BS, Binner P, Waldmuller S et al (2007) Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS One 2:e1362

    Article  PubMed  Google Scholar 

  8. Caputo S, Capozzi G, Russo MG et al (2005) Familial recurrence of congenital heart disease in patients with ostium secundum atrial septal defect. Eur Heart J 26:2179–2184

    Article  PubMed  Google Scholar 

  9. Ching YH, Ghosh TK, Cross SJ et al (2005) Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet 37:423–428

    Article  PubMed  CAS  Google Scholar 

  10. Clark KL, Yutzey KE, Benson DW (2006) Transcription factors and congenital heart defects. Annu Rev Physiol 68:97–121

    Article  PubMed  CAS  Google Scholar 

  11. Elliott DA, Kirk EP, Yeoh T et al (2003) Cardiac homeobox gene NKX2–5 mutations and congenital heart disease: associations with atrial septal defect and hypoplastic left heart syndrome. J Am Coll Cardiol 41:2072–2076

    Article  PubMed  CAS  Google Scholar 

  12. Garg V, Kathiriya IS, Barnes R et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447

    Article  PubMed  CAS  Google Scholar 

  13. Granados-Riveron JT, Ghosh TK, Pope M et al (o J) David Brook J Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet 19:4007–4016

  14. Hirayama-Yamada K, Kamisago M, Akimoto K et al (2005) Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A 135:47–52

    PubMed  Google Scholar 

  15. Jenkins KJ, Correa A, Feinstein JA et al (2007) Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115:2995–3014

    Article  PubMed  Google Scholar 

  16. Kaemmerer H, Hess J (2005) Adult patients with congenital heart abnormalities: present and future. Dtsch Med Wochenschr 130:97–101

    Article  PubMed  CAS  Google Scholar 

  17. Kelley C, Blumberg H, Zon LI, Evans T (1993) GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 118:817–827

    PubMed  CAS  Google Scholar 

  18. Kirk EP, Hyun C, Thomson PC et al (2006) Quantitative trait loci modifying cardiac atrial septal morphology and risk of patent foramen ovale in the mouse. Circ Res 98:651–658

    Article  PubMed  CAS  Google Scholar 

  19. Kirk EP, Sunde M, Costa MW et al (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291

    Article  PubMed  CAS  Google Scholar 

  20. Lints TJ, Parsons LM, Hartley L et al (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:419–431

    PubMed  CAS  Google Scholar 

  21. Lyons I, Parsons LM, Hartley L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev 9:1654–1666

    Article  PubMed  CAS  Google Scholar 

  22. Matsson H, Eason J, Bookwalter CS et al (2008) Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet 17:256–265

    Article  PubMed  CAS  Google Scholar 

  23. McDermott DA, Hatcher CJ, Basson CT (2008) Atrial Fibrillation and Other Clinical Manifestations of Altered TBX5 Dosage in Typical Holt-Oram Syndrome. Circ Res 103:e96

    Article  PubMed  CAS  Google Scholar 

  24. Molkentin JD, Lin Q, Duncan SA, Olson EN (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11:1061–1072

    Article  PubMed  CAS  Google Scholar 

  25. Moradi Marjaneh M, Kirk EP, Posch MG et al (o J) Investigation of Association between PFO Complicated by Cryptogenic Stroke and a Common Variant of the Cardiac Transcription Factor GATA4. PLoS One 6:e20711

  26. Morimoto S (2008) Sarcomeric proteins and inherited cardiomyopathies. Cardiovasc Res 77:659–666

    Article  PubMed  CAS  Google Scholar 

  27. Nemer G, Fadlalah F, Usta J et al (2006) A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot. Hum Mutat 27:293–294

    Article  PubMed  Google Scholar 

  28. Okubo A, Miyoshi O, Baba K et al (2004) A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet 41:e97

    Article  PubMed  CAS  Google Scholar 

  29. Oyen N, Poulsen G, Boyd HA et al (2009) Recurrence of congenital heart defects in families. Circulation 120:295–301

    Article  PubMed  Google Scholar 

  30. Pehlivan T, Pober BR, Brueckner M et al (1999) GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease. Am J Med Genet A 83:201–206

    Article  CAS  Google Scholar 

  31. Posch MG, Gramlich M, Sunde M et al (2009) A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects. J Med Genet 47:230–235

    Article  PubMed  Google Scholar 

  32. Posch MG, Perrot A, Schmitt K et al (2008) Mutations in GATA4, NKX2.5, CRELD1, and BMP4 are infrequently found in patients with congenital cardiac septal defects. Am J Med Genet A 146A:251–253

    Article  PubMed  CAS  Google Scholar 

  33. Postma AV, Meerakker JB van de, Mathijssen IB et al (2008) A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 102:1433–1442

    Article  PubMed  CAS  Google Scholar 

  34. Schott JJ, Benson DW, Basson CT et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2–5. Science 281:108–111

    Article  PubMed  CAS  Google Scholar 

  35. Stennard FA, Costa MW, Lai D et al (2005) Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132:2451–2462

    Article  PubMed  CAS  Google Scholar 

  36. Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132:4897–4910

    Article  PubMed  CAS  Google Scholar 

  37. Terrett JA, Newbury-Ecob R, Cross GS et al (1994) Holt-Oram syndrome is a genetically heterogeneous disease with one locus mapping to human chromosome 12q. Nat Genet 6:401–404

    Article  PubMed  CAS  Google Scholar 

  38. Posch MG, Perrot A, Berger F, Özcelik C (2010) Molecular genetics of congenital atrial septal defects. Clin Res Cardiol 99:137–147

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.G. Posch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posch, M., Berger, F. & Hetzer, R. Molekulargenetische Grundlagen des Vorhofseptumdefekts. Z Herz- Thorax- Gefäßchir 25, 292–296 (2011). https://doi.org/10.1007/s00398-011-0866-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-011-0866-6

Schlüsselwörter

Keywords

Navigation