Skip to main content

Advertisement

Log in

Rolle der endothelialen Stickoxidproduktion bei SDF-1α/TNF-α-vermittelter Migration von Stammzellen in vivo

Role of endothelial nitric oxide synthesis in SDF-1α/TNF-α mediated stem cell migration in vivo

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Die regulierenden Signalwege, welche die Migration von therapeutisch applizierten Stammzellen („homing“) beispielsweise in ein ischämisch geschädigtes Myokard vermitteln, sind bisher nur in Ansätzen untersucht. In unserer Arbeitsgruppe haben wir die Interaktionen von Knochenmarkstammzellen und Gefäßendothel, in Abhängigkeit von lokaler Inflammation sowie endothelialer Stickoxid(NO)produktion, in der Mikrozirkulation einer Maus untersucht. Hierzu wurden ein etabliertes Tiermodell sowie die intravitale Fluoreszenzmikroskopie angewandt. Es konnte gezeigt werden, dass die Präsenz des Chemokins SDF-1α in Kombination mit lokaler Stimulation durch TNF-α selektiv die Interaktion von c-kit+-Knochenmarkstammzellen mit dem Gefäßendothel in extramedullärem Gewebe verstärkt. Weiterhin konnte gezeigt werden, dass sowohl die Expression als auch die Funktion der endothelialen NO-Synthase für diesen adhäsionsverstärkenden Effekt von SDF-1α bei einer entzündlichen Gewebssituation unabdingbar sind. Therapieprotokolle, die eine intravaskuläre Stammzellapplikation vorsehen, sollten die lokale endotheliale NO-Produktion als limitierenden Faktor der Zellmigration berücksichtigen.

Abstract

The underlying mechanisms of stem cell migration after therapeutic application to non-marrow tissue, e.g., in ischemia-damaged myocardium, have not been clarified. In order to analyzse the role of stromal cell-derived factor-1α (SDF-1α) and endothelial nitric oxide synthase next toassociated with a local inflammatory response, we studied peripheral c-kit+ stem cell interactions with the local vascular endothelium in vivo using a mouse model of intravital microscopy. We were able to showIn this study, it was shown that besides the presence of SDF-1α, an inflammatory response induced by local tumor necrosis factor-α (TNF-α) treatment is needed for relevant stem cell interactions with the vascular endothelium in vivo. Moreover, the presence of endothelial nitric oxide synthase (eNOS) appears to be a crucial factor for firm c-kit+ stem cell adhesion to the vascular endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abbott JD, Huang Y, Liu D et al (2004) Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110:3300–3305

    Article  PubMed  Google Scholar 

  2. Aicher A, Heeschen C, Mildner-Rihm C et al (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376

    Article  CAS  PubMed  Google Scholar 

  3. Albrecht EW, Stegeman CA, Heeringa P et al (2003) Protective role of endothelial nitric oxide synthase. J Pathol 199:8–17

    Article  PubMed  Google Scholar 

  4. Baez S (1973) An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 5:384–394

    Article  CAS  PubMed  Google Scholar 

  5. Claps CM, Corcoran KE, Cho KJ, Rameshwar P (2005) Stromal derived growth factor-1alpha as a beacon for stem cell homing in development and injury. Curr Neurovasc Res 2:319–329

    Article  CAS  PubMed  Google Scholar 

  6. Damas JK, Eiken HG, Oie E et al (2000) Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 47:778–787

    Article  CAS  PubMed  Google Scholar 

  7. Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583

    CAS  PubMed  Google Scholar 

  8. Guthrie SM, Curtis LM, Mames RN et al (2005) The nitric oxide pathway modulates hemangioblast activity of adult hematopoietic stem cells. Blood 105:1916–1922

    Article  CAS  PubMed  Google Scholar 

  9. Hiasa K, Ishibashi M, Ohtani K et al (2004) Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 109:2454–2461

    Article  CAS  PubMed  Google Scholar 

  10. Horuk R (2001) Chemokine receptors. Cytokine Growth Factor Rev 12:313–335

    Article  CAS  PubMed  Google Scholar 

  11. Huang PL (2003) Endothelial nitric oxide synthase and endothelial dysfunction. Curr Hypertens Rep 5:473–480

    Article  PubMed  Google Scholar 

  12. Iwami Y, Masuda H, Asahara T (2004) Endothelial progenitor cells: past, state of the art, and future. J Cell Mol Med 8:488–497

    Article  PubMed  Google Scholar 

  13. Jackson KA, Maiska SU, Wang H et al (2001) Regeneration of cardiac muscle and vascular endothelium by stem cells. J Clin Invest 107(11):1395-1402

    Article  CAS  PubMed  Google Scholar 

  14. Kaminski A, Ma N, Donndorf P et al (2008) Endothelial NOS is required for SDF-1α/CXCR4 mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells. Lab Invest 88(1):58-69

    Article  CAS  PubMed  Google Scholar 

  15. Krukenmeyer MG SH-U (2005) Chirurgische Forschung. Thieme, Stuttgart

  16. Ma N, Ladilov Y, Moebius JM et al (2006) Intramyocardial delivery of human CD133+ cells in a SCID mouse cryoinjury model: Bone marrow vs. cord blood-derived cells. Cardiovasc Res 71:158–169

    Article  CAS  PubMed  Google Scholar 

  17. Makino N, Maeda T, Sugano M et al (2005) High serum TNF-alpha level in Type 2 diabetic patients with microangiopathy is associated with eNOS down-regulation and apoptosis in endothelial cells. J Diabetes Complications 19:347–355

    Article  PubMed  Google Scholar 

  18. Masuda H, Kalka C, Asahara T (2000) Endothelial progenitor cells for regeneration. Hum Cell 13(4):153–160

    CAS  PubMed  Google Scholar 

  19. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    Article  CAS  PubMed  Google Scholar 

  20. Peled A, Kollet O, Ponomaryov T et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296

    CAS  PubMed  Google Scholar 

  21. Ratajczak MZMM, Kucia M, Drukula J et al (2003) Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoetic stem/progenitor cells in muscles. Stem Cells (Dayton, Ohio) 21:363–371

    Google Scholar 

  22. Sanz MJ, Hickey MJ, Johnston B et al (2001) Neuronal nitric oxide synthase (NOS) regulates leukocyte-endothelial cell interactions in endothelial NOS deficient mice. Br J Pharmacol 134:305–312

    Article  CAS  PubMed  Google Scholar 

  23. Sasaki K, Heeschen C, Aicher A et al (2006) Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci U S A 103:14537–14541

    Article  CAS  PubMed  Google Scholar 

  24. Sessa WC (2004) eNOS at a glance. J Cell Sci 117:2427–2429

    Article  CAS  PubMed  Google Scholar 

  25. Smits AM, Vliet P van, Hassink RJ et al (2005) The role of stem cells in cardiac regeneration. J Cell Mol Med 9:25–36

    Article  CAS  PubMed  Google Scholar 

  26. Strieter RM, Burdick MD, Mestas J et al (2006) Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42:768–778

    Article  CAS  PubMed  Google Scholar 

  27. Tse HF, Yiu KH, Lau CP (2007) Bone marrow stem cell therapy for myocardial angiogenesis. Curr Vasc Pharmacol 5:103–112

    Article  CAS  PubMed  Google Scholar 

  28. Vandervelde S, Luyn MJ van, Tio RA, Harmsen MC (2005) Signaling factors in stem cell-mediated repair of infarcted myocardium. J Mol Cell Cardiol 39:363–376

    Article  CAS  PubMed  Google Scholar 

  29. Vural KMaO MC (2000) Endothelial adhesivity, pulmonary hemodynamics and nitric oxide synthesis in ischemia-reperfusion. Eur J Cardiothorac Surg 18(3):348–352

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Johnsen HE, Mortensen S et al (2006) Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart (British Cardiac Society) 92:768–774

    Google Scholar 

  31. Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich bei Laboratory Investigation (Nature Publishing Group) für die Zusammenarbeit bei der Zusammenstellung der hier abgedruckten Abbildungen.

Interessenkonflikt

Der Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.J. Donndorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donndorf, P., Steinhoff, G. Rolle der endothelialen Stickoxidproduktion bei SDF-1α/TNF-α-vermittelter Migration von Stammzellen in vivo. Z Herz- Thorax- Gefäßchir 24, 317–323 (2010). https://doi.org/10.1007/s00398-010-0800-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-010-0800-3

Schlüsselwörter

Keywords

Navigation