Skip to main content

Advertisement

Log in

Positiv inotroper Effekt von Ivabradin am atrialen Myokard des Menschen

Positive inotropic effect of Ivabradine in human atrial myocardium

  • Originalarbeit
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Ziel

Analyse des Kontraktionsverhaltens und des intrazellulären Kalziumstoffwechsels im isolierten atrialen Myokard des Menschen.

Methoden

Isoliertes menschliches atriales Myokard aus chirurgischem Resektionsmaterial wurde mit Fura 2 zur Messung des intrazellulären Kalziums untersucht. Die Präparate wurden supramaximal elektrisch stimuliert. Kraftentwicklung und intrazelluläres Kalzium wurden bei ansteigenden Ivabradin-Konzentrationen simultan gemessen. Unterschiedliche Stimulationsfrequenzen wurden verwendet, um die Kraft-Frequenz-Beziehung unter Ivabradin-Einfluss zu analysieren.

Ergebnisse

Mit steigender Ivabradin-Konzentration kam es zu einem signifikanten Anstieg der Amplituden des intrazelluären Kalziumtransienten und der Kraftamplituden (p<0,01) und zu einer Reduktion des intrazellulären diastolischen Kalziums (p<0,01). Ein signifikanter Anstieg der Kraft wurde bei 5 µM Ivabradin beobachtet. Eine Erhöhung der Dosis führte zu keinem weiteren Anstieg des positiv inotropen Effektes.

Schlussfolgerung

Die Daten belegen für Ivabradin einen positiv inotropen Effekt und jenseits des Sinusknotens nachweisbare Effekte auf das Kontraktionsverhalten des atrialen menschlichen Myokards.

Abstract

Objectives

The present study tests, whether Ivabradine has an action aside from the sinus node in human atrial tissue.

Methods

Human atrial myocardium was loaded with the fluorescent dye Fura 2 for intracellular calcium measurements. The preparations were electrically stimulated at optimal length while diastolic and systolic intracellular calcium and mechanical force output were simultaneously recorded. Increasing Ivabradine concentrations were tested. Varying stimulation frequencies were applied in order to analyse the force frequency relation under conditions of Ivabradine incubation.

Results

Increasing Ivabadrin concentrations had a direct effect in increasing the amplitude of intracellular calcium transient and on the amplitude of active force generation (p<0.01). There was a reduction of diastolic intracellular calcium and of diastolic resting force with increasing Ivabradine concentrations (p<0.01). Increases of the Ivabradine dose did not further increase the positive inotropic effect.

Conclusion

Ivabradine has a positive inotropic effect aside from the sinus node in atrial myocardium. It is a substance with a direct positive inotropic effect as shown by the present data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Bois P, Bescond J, Renaudon B, Lenfant J (1996) Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells. Br J Pharmacol 118(4):1051–1057

    CAS  PubMed  Google Scholar 

  2. Stieber J, Wieland K, Stöckl G et al (2006) Bradycardic and proarrhythmic properties of sinus node inhibitors. Mol Pharmacol 69(4):1328–1337

    Article  CAS  PubMed  Google Scholar 

  3. DiFrancesco D, Camm JA (2004) Heart rate lowering by specific and selective I(f) current inhibition with ivabradine: a new therapeutic perspective in cardiovascular disease. Drugs 64(16):1757–1765

    Article  CAS  PubMed  Google Scholar 

  4. Giorgetti A, Carloni P, Mistrik P, Torre V (2005) A homology model of the pore region of HCN channels. Biophys J 89(2):932–944

    Article  CAS  PubMed  Google Scholar 

  5. Schulze-Bahr E, Neu A, Friederich P et al (2003) Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 111(10):1537–1545

    CAS  PubMed  Google Scholar 

  6. Thollon C, Cambarrat C, Vian J et al (1994) Electrophysiological effects of S 16257, a novel sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with UL-FS 49. Br J Pharmacol 112(1):37–42

    CAS  PubMed  Google Scholar 

  7. Bowditch HP (1871) Über die Eigentümlichkeit der Reizbarkeit, welche die Muskelfasern des Herzens zeigen. Berl Sachs Ges (Akad) Wiss 23:652–689

    Google Scholar 

  8. Koch-Weser J, Blinks JR (1962) Analysis of the relation of the positive inotropic action of cardiac glycosides to the frequency of contraction of heart muscle. J Pharmacol Exp Ther 136:305–317

    CAS  PubMed  Google Scholar 

  9. Framtpn JE, Orchard CH, Boyett MR (1991) Diastolic, systolic and sarcoplasmic reticulum [Ca2+] during inotropic interventions in isolated rat myocytes. J Physiol (Lond) 437:pp 351–375

    Google Scholar 

  10. Schouten VJ, ter Keurs HE (1991) Role of Ica and Na+/Ca2+ exchange in the force frequency relationship of rat heart muscle. J Mol Cell Cardiol 23(9):1039–1050

    Article  CAS  PubMed  Google Scholar 

  11. Mulieri LA, Hasenfuss G, Leavitt B et al (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85(5):1743–1750

    CAS  PubMed  Google Scholar 

  12. Hasenfuss G, Holubarsch C, Hermann HP et al (1994) Influence of the force-frequency relationship on haemodynamics an left ventricular function in patients with non-failing hearts and in patients with dilated cardiomyopathy. Eur Heart J 15(2):164–170

    CAS  PubMed  Google Scholar 

  13. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  14. Vahl CF, Bonz A, Timek T, Hagl S (1994) Intracellular calcium transient of working human myocardium of seven patient transplated for congestive heart failure. Circ Res 74:952–958

    CAS  PubMed  Google Scholar 

  15. Koch-Weser J (1963) Effect of rate changes on strength and time course of contraction of papillary muscle. Am J Physiol 204:451–457

    CAS  PubMed  Google Scholar 

  16. Blinks JR, Koch-Weser J (1961) Analysis of the effects of changes in rate and rhythm upon myocardial contractility. J Pharmacol Exp Ther 134:373–389

    CAS  PubMed  Google Scholar 

  17. Thollon C, Bidouard JP, Cambarrat C et al (1997) Stereospecific in vitro and in vivo effects of the new sinus node inhibitor (+)-S 16257. Eur J Pharmacol 339(1):43–51

    Article  CAS  PubMed  Google Scholar 

  18. Güth K, Poole KJ, Maughan D, Kuhn HJ (1987) The apparent rates of crossbridge attachment and detachment estimated from atpase activity in insect flight muscle. Biophys J 52(6):1039–1045

    Article  PubMed  Google Scholar 

  19. Mulieri LA, Leavitt B, Hasenfuss G et al (1992 b) Contraction frequency dependence of twitch and diastolic tension in human dilated cardiomyopathy (Tension-frequency relation in cardiomyopathy). Basic Res Cardiol 87:199–212

    PubMed  Google Scholar 

  20. Allen DG, Smith GL (1987) The effects of hypertonicity on tension and intracellular calcium concentration in ferret ventricular muscle. J Physiol 383:425–439

    CAS  PubMed  Google Scholar 

  21. Piot C, Lemaire S, Albat B et al (1996) Richard, High frequency- induced upregulation of human cardiac calcium currents. Circulation 93(1):120–128

    CAS  PubMed  Google Scholar 

  22. Lemaire S, Piot C, Leclercq F et al (1998) Richard, Heart rate as a determinant of L-type Ca2+ channel activity: Mechanisms and implication in force-frequency relation. Basic Res Cardiol 93 (Suppl 1):51–59

    Article  CAS  PubMed  Google Scholar 

  23. Bers DM (1987) Mechanisms contributing to the cardiac inotropic effect of Na pump inhibition and reduction of extracellular Na. J Gen Physiol 90(4):479–504

    Article  CAS  PubMed  Google Scholar 

  24. Lai LP, Su MJ, Lin JL et al (1999) Down-regulation of L-type calcium channel and sarcoplasmic reticular Ca(2+)-ATPasae mRNA in human atrial fibrillation without significant change in the mRNA of ryanodine receptor, calsequestrin and phospholamban: An insight into the mechanism of atrial electrical remodeling. J Am Coll Cardiol 33(5):1231–1237

    Article  CAS  PubMed  Google Scholar 

  25. Hasenfuss G, Reinecke H, Studer R et al (1994) Drexler, Realtion between mypcardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442

    CAS  PubMed  Google Scholar 

  26. Arai M (2000) Function and regulation of sarcoplasmic reticulum Ca2+-ATPase: Advances during the past decade and prospects for the coming decade. Jpn Heart J 41(1):pp 1–13

    Article  Google Scholar 

  27. Bluhm WF, Kranius EG, Dillmann WH, Meyer M (2000) Phospholamban: A major determinant of the cardiac force-frequency relationship. Am J Physiol Heart Circ Physiol 278(1):H249–H255

    CAS  PubMed  Google Scholar 

  28. Kambayashi M, Miura T, Oh BH et al (1992) Enhancement of the force-frequency effect on myocardial contractility by adrenergic stimulation in conscious dogs. Circulation 86(2):572–580

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Karliova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karliova, I., Denk, K., Hakami, L. et al. Positiv inotroper Effekt von Ivabradin am atrialen Myokard des Menschen. Z Herz- Thorax- Gefäßchir 23, 204–211 (2009). https://doi.org/10.1007/s00398-009-0730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-009-0730-0

Schlüsselwörter

Keywords

Navigation