Skip to main content

Advertisement

Log in

Proteomik

Erforschung molekularer Krankheitsursachen

Proteomics. Search for molecular basis of disease

  • Übersichten
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Die Umsetzung der Erbinformation erfolgt durch Transkription der genetischen Information in mRNA-Moleküle und durch Translation in Proteinmoleküle. Die Untersuchung der Gesamtheit dieser zwei Entitäten in komplexen biologischen Proben, also die Analyse von Transkriptom und Proteom, ermöglicht die Erfassung der molekularen Vorgänge.

Proteomik ist eine Hochdurchsatztechnologie. Sie beruht zumeist auf der Kombination zweier Verfahren: Der 2D-Gelelektrophorese und der Massenspektrometrie. Beide Methoden ermöglichen die gleichzeitige Analyse einer großen Anzahl verschiedener molekularer Spezies von Proteinen.

Ziel der experimentellen, kliniknahen, kardiologischen Proteomik-Forschung ist die Erhebung von Fakten zur Entschlüsselung der molekularen Basis kardiovaskulärer Krankheiten. Zusätzlich hofft man, Marker zu identifizieren, die prädiktiven Wert für Entwicklung und Verlauf von Krankheiten haben. Für beide Ziele ist es von Vorteil, Tierversuchsmodelle zu etablieren, um auch solche kardiovaskulär relevanten Fragestellungen bearbeiten zu können, die nicht am menschlichen Material durchführbar sind.

Die vorliegende Arbeit stellt in der Basler Forschungsgruppe entstandene Untersuchungsbeispiele und -ergebnisse dar.

Abstract

Genetic information is decoded by a transcription process into mRNA, and thereafter through a translation process into protein molecules. The analysis of the entirety of these two components, i.e. analysis of the transcriptome and of the proteome, enables the assessment of molecular events in complex biological systems. Proteomics aims at unravelling structural and functional identities of protein components of cells, tissue and body fluids. It is based on a high throughput technology, mostly in combination of two methods: 2D gel electrophoresis and mass spectrometry. This approach enables simultaneous analysis of a large number of different molecular species of proteins.

The aim of the clinical applications of cardiovascular proteome research is to establish facts that will help to decipher the molecular basis of cardiovascular diseases. One hopes to obtain additional information that will determine factors that possess predictive value for development and progression of diseases, and therefore might serve as predictors for adequate therapy. Furthermore it seeks to establish animal models relevant to cardiovascular pathology when using procedures that cannot be performed on human material. The presented work provides examples on research under scrutiny in the Basler group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis;19:1853–1861

    Article  PubMed  CAS  Google Scholar 

  2. Lescuyer P, Hochstrasser D, Rabilloud T (2007) How shall we use the proteomics toolbox for biomarker discovery? J Proteome Res. Sep; 6(9):3371–3376

    Article  CAS  Google Scholar 

  3. Hochstrasser DF, Sanchez JC, Appel RD (2002) Proteomics and its trends facing nature's complexity. Proteomics Jul; 2(7):807–812

    Article  CAS  Google Scholar 

  4. Lefkovits I (2003) Functional and structural proteomics: a critical appraisal. J Chromatogr B Analyt Technol Biomed Life Sci Apr 5; 787(1):1–10

    Article  CAS  Google Scholar 

  5. Anderson NL, Hofmann JP, Gemmell A, Taylor J (1984) Global approaches to quantitative analysis of gene-expression patterns observed by use of two-dimensional gel electrophoresis. Clin Chem; 30:2031–2033

    PubMed  CAS  Google Scholar 

  6. Zerkowski HR, Grussenmeyer T, Matt P, Grapow M, Engelhardt S, Lefkovits I (2004) Proteomics strategies in cardiovascular research. J Proteome Res Mar-Apr; 3(2):200–208

    Article  CAS  Google Scholar 

  7. McGregor E, Dunn MJ (2003) Proteomics of heart disease. Hum Mol Genet. Oct 15; 12 Spec No 2:R135–R144

    Article  CAS  Google Scholar 

  8. Dos Remedios CG, Liew CC, Allen PD, Winslow RL, Van Eyk JE, Dunn MJ (2003) Genomics, proteomics and bioinformatics of human heart failure. J Muscle Res Cell Motil; 24(4–6):251–260

    Article  PubMed  CAS  Google Scholar 

  9. Matt P, Grapow M, Grussenmeyer T, Lefkovits I, Zerkowski HR (2005) Proteomics research in cardiovascular disease. Res Adv in Cardiology, 4

  10. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphrey-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev; 13:19–50

    PubMed  CAS  Google Scholar 

  11. Anderson NG, Anderson L (1982) The Human Protein Index. Clin Chem; 28:739–748

    PubMed  CAS  Google Scholar 

  12. Anderson NG, Matheson A, Anderson NL (2001) Back to the future: the human protein index (HPI) and the agenda for post-proteomic biology. Proteomics; 1:3–12

    Article  PubMed  CAS  Google Scholar 

  13. Lefkovits I, Kettman JR, Coleclough C (1990) A strategy for founding a global lymphocyte proteinpaedia and gene catalogue. Immunol Today. May; 11(5):157–162

    Article  CAS  Google Scholar 

  14. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem; 250:4007–4021

    PubMed  Google Scholar 

  15. Garcia-Sanz JA, Mikulits W, Livingstone A, Lefkovits I, Mullner EW (1998) Translational control: a general mechanism for gene regulation during T cell activation. Faseb J; 12:299–306

    PubMed  CAS  Google Scholar 

  16. Scheler C, Müller EC, Stahl J, Müller-Werdan U, Salnikow J, Jungblut P (1997) Identification and characterization of heat shock protein 27 protein species in human myocardial two-dimensional electrophoresis patterns. Electrophoresis. Dec; 18(15):2823–2831

    Article  CAS  Google Scholar 

  17. Buckley CE III, Dorsey, FC (1971) Serum immunoglobulin levels throughout the life-span of healthy man. Ann Intern Med; 75:673 –682

    PubMed  CAS  Google Scholar 

  18. Tissot J D, Schneider P, James RW, Daigneault R, Hochstrasser, DF (1991) High-resolution two-dimensional protein electrophoresis of pathological plasma/serum. Appl Theor Electrophor; 2:7 –12

    PubMed  CAS  Google Scholar 

  19. Anderson NL, Anderson NG(1978) Analytical techniques for cell fractions. XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis. Anal Biochem Apr; 85(2):341–354

    Article  CAS  Google Scholar 

  20. Lefkovits I, Young P, Kuhn L, Kettmann J, Gemell A, Tollaksen S, Anderson L, Anderson N (1985) Use of Large-Scale Two-Dimensional ISODALT Gel Electrophoresis System in Immunology. In: Ivan Lefkovits et al. (Hg.) Immunological Methods. Vol. III. Academic Press, INC., San Diego

  21. Lahm HW, Langen H (2000) Mass spectrometry: a tool for the identification of proteins separated by gels. Electrophoresis; 21:2105–2114

    Article  PubMed  CAS  Google Scholar 

  22. Lampert FM, Matt P, Grapow M, Lefkovits I, Zerkowski HR, Grussenmeyer T (2007) “Turnover proteome” of human atrial trabeculae. J Proteome Res. Nov; 6(11): 4458-4468; Epub 2007 Oct 4

    Article  CAS  Google Scholar 

  23. Copper GT (1997) Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annual Review of Medicine; 48:13–23

    Article  Google Scholar 

  24. Habicht JM, Scherr P, Zerkowski HR, Hoffmann A (2000) Late conduction defects following aortic valve replacement. J Heart Valve Dis. Sep; 9(5):29–632

    Google Scholar 

  25. Labarrere, CA, Nelson DR, Park JW (2001) Pathologic markers of allograft arteriopathy: insight into the pathophysiology of cardiac allograft chronic rejection. Curr Opin Cardiol. Mar; 16(2):110–117

    Article  CAS  Google Scholar 

  26. Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D (1995) Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation; 91:2717–2720

    PubMed  CAS  Google Scholar 

  27. Nakatani S, McCarthy PM, Kottke-Marchant K, Harasaki H, James KB, Savage RM, Thomas JD (1996) Left ventricular echocardiographic and histologic changes: impact of chronic unloading by an implantable ventricular assist device. J Am Coll Cardiol; 27:894–901

    Article  PubMed  CAS  Google Scholar 

  28. Grapow MT, Kern T, Reineke DC, Brett W, Bernet F, Rueter F, Muller-Schweinitzer E, Zerkowski HR (2003) Improved endothelial function after a modified harvesting technique of the internal thoracic artery. Eur J Cardiothorac Surg; 23:956–960; discussion 960–961

    Article  PubMed  Google Scholar 

  29. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, Khaghani A, Yacoub MH (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. Nov 2; 355(18):1873–1884

    Article  CAS  Google Scholar 

  30. Matt P, Fu Z, Carrel T, Huso DL, Dirnhofer S, Lefkovits I, Zerkowski HR, Van Eyk JE (2007) Proteomic alterations in heat shock protein 27 and identification of phosphoproteins in ascending aortic aneurysm associated with bicuspid and tricuspid aortic valve. J Mol Cell Cardiol Dec; 43(6):792–801

    Article  CAS  Google Scholar 

  31. Matt P, Orelli A von, Bernet F, Grussenmeyer T, Lefkovits I, Zerkowski HR (2007) Proteomics of ascending aortic aneurysm with bicuspid or tricuspid aortic valve. Asian Cardiovasc Thorac Ann Jun; 15(3):185–190

    Google Scholar 

  32. Dahl LK, Heine M, Tassinari L (1962) Effects of chronic excess salt ingestion. Evidence that genetic factors play an important role in susceptibility to experimental hypertension. J Exp Med; 115:1173–1190

    Article  PubMed  CAS  Google Scholar 

  33. Rapp JP, Dene H (1985) Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension; 7:340–349

    PubMed  CAS  Google Scholar 

  34. Grussenmeyer T, Lefkovits I, Zerkowski, HR. Proteomic assessment of ventricular proteins of the Dahl rat model (in preparation)

  35. van Niel G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem (Tokyo) Jul; 140(1):13–21

    CAS  Google Scholar 

  36. Nezlin R (2007) Non-immune IgG complexes in the circulation. Trends Immunol; Dec 10:1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Lefkovits.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefkovits, I. Proteomik. Z Herz- Thorax- Gefäßchir 22, 7–15 (2008). https://doi.org/10.1007/s00398-008-0610-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-008-0610-z

Schlüsselwörter

Keywords

Navigation