Skip to main content

Advertisement

Log in

Neuroprotektion in der Aortenbogenchirurgie: Experimentelle Untersuchungen und klinische Analyse

Neuroprotection in surgery of the aortic arch: Experimental and clinical analysis

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Die chirurgische Behandlung von Aortenbogenaneurysmen ist trotz zunehmender medizinischer Expertise auch heute noch mit signifikanter Morbidität und Mortalität assoziiert. Dabei sind insbesondere neurologische Schäden von entscheidendem Belang.

Zur besseren Protektion des Zerebrums wurden deshalb neben dem isolierten hypothermen Kreislaufstillstand in den letzten Jahren eine Reihe von additiven Verfahren etabliert, die im Wesentlichen auf eine Verringerung der Ischämiezeit abzielen. Darüber hinaus existieren sowohl klinisch als auch experimentell eine Vielzahl weiterer Ansätze, deren Bewertung jedoch verschiedenster Gründe wegen nicht unproblematisch ist.

Die vorliegende Arbeit vermittelt, basierend auf den Erfahrungen der eigenen Arbeitsgruppe, einen groben Überblick über derzeit gängige klinische Verfahren zur Neuroprotektion. Zudem werden experimentell bearbeitete Ansätze kritisch diskutiert und auf deren potenzielle Anwendbarkeit in der Klinik hin überprüft.

Abstract

Surgery of the aortic arch requiring hypothermic circulatory arrest is still associated with substantial morbidity and mortality. In many cases this is due to neurological sequelae as a result of embolic events or imperfect cerebral protection. With increasing expertise, various cerebral protection techniques have been introduced over time. Most of them still rely on hypothermic circulatory arrest, but selective perfusion techniques can be added. The idea behind this concept is to reduce the ischemic time of the brain to gain more time for the treatment of complexpathologies. There are a number of other experimental or clinical strategies for neuroprotection. The interpretation of the results is not without problems.

This paper includes a synopsis of different cerebral protection techniques as used in many cardiothoracic centers. Furthermore it gives an overview of various experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Allen BS, Veluz JS, Buckberg GD, Aeberhard E, Ignarro LJ (2003) Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate – a new concept. J Thorac Cardiovasc Surg;125:625–632

    Article  PubMed  Google Scholar 

  2. Bachet J, Guilmet D, Goudot B, et al. (1999) Antegrade cerebral perfusion with cold blood: a 13- year experience. Ann Thorac Surg; 67:1874–1878; discussion 1891–1874.

    Article  PubMed  CAS  Google Scholar 

  3. Baumgartner WA, Walinsky PL, Salazar JD, et al. (1999) Assessing the impact of cerebral injury after cardiac surgery: will determining the mechanism reduce this injury? Ann Thorac Surg; 67:1871–1873; discussion 1891–1874.

    Article  PubMed  CAS  Google Scholar 

  4. Boeckxstaens CJ, Flameng WJ (1995) Retrograde cerebral perfusion does not perfuse the brain in nonhuman primates. Ann Thorac Surg; 60:319–327; discussion 327–318.

    Article  PubMed  CAS  Google Scholar 

  5. de Brux JL, Subayi JB, Pegis JD, Pillet J (1995) Retrograde cerebral perfusion: anatomic study of the distribution of blood to the brain. Ann Thorac Surg; 60:1294–1298.

    Article  PubMed  CAS  Google Scholar 

  6. Dossche KM, Morshuis WJ, Schepens MA, Waanders FG (2000) Bilateral antegrade selective cerebral perfusion during surgery on the proximal thoracic aorta. Eur J Cardiothorac Surg; 17:462–467

    Article  PubMed  CAS  Google Scholar 

  7. Ehrlich MP, Hagl C, McCullough J, et al. (2001) Retrograde Cerebral Perfusion Provides Negligible Flow Through Brain Capillaries in the Pig.; in press

  8. Ergin MA, Uysal S, Reich DL, et al. (1999) Temporary neurological dysfunction after deep hypothermic circulatory arrest: a clinical marker of long-term functional deficit. Ann Thorac Surg; 67:1887–1890; discussion 1891–1884

    Article  PubMed  CAS  Google Scholar 

  9. Griepp RB, Stinson EB, Hollingsworth JF, Buehler D (1975) Prosthetic replacement of the aortic arch. J Thorac Cardiovasc Surg; 70:1051–1063

    PubMed  CAS  Google Scholar 

  10. Hagl C, Ergin MA, Galla JD, et al. (2001) Neurologic outcome after ascending aorta-aortic arch operations: effect of brain protection technique in high-risk patients. J Thorac Cardiovasc Surg; 121:1107–1121

    Article  PubMed  CAS  Google Scholar 

  11. Hagl C, Khaladj N, Peterss S, et al. (2004) Hypothermic circulatory arrest with and without cold selective antegrade cerebral perfusion: impact on neurological recovery and tissue metabolism in an acute porcine model. Eur J Cardiothorac Surg; 26:73–80

    Article  PubMed  Google Scholar 

  12. Hagl C, Khaladj N, Weisz DJ, et al. (2002) Impact of high intracranial pressure on neurophysiological recovery and behavior in a chronic porcine model of hypothermic circulatory arrest. Eur J Cardiothorac Surg; 22:510–516

    Article  PubMed  Google Scholar 

  13. Hagl C, Tatton NA, Khaladj N, et al. (2001) Involvement of apoptosis in neurological injury after hypothermic circulatory arrest: a new target for therapeutic intervention? Ann Thorac Surg; 72:1457–1464

    Article  PubMed  CAS  Google Scholar 

  14. Hagl C, Tatton NA, Weisz DJ, et al. (2001) Cyclosporine A as a potential neuroprotective agent: a study of prolonged hypothermic circulatory arrest in a chronic porcine model. Eur J Cardiothorac Surg; 19:756–764

    Article  PubMed  CAS  Google Scholar 

  15. Hagl C, Weisz DJ, Khaladj N, et al. (2005) Use of a maze to detect cognitive dysfunction in a porcine model of hypothermic circulatory arrest. Ann Thorac Surg; 79:1307–1314; discussion 1314–1305

    Article  PubMed  Google Scholar 

  16. Hara H, Friedlander RM, Gagliardini V, et al. (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci USA; 94:2007–2012

    Article  PubMed  CAS  Google Scholar 

  17. Harringer W (2000) Capture of particulate emboli during cardiac procedures in which aortic crossclamp is used. International Council of Emboli Management Study Group. Ann Thorac Surg; 70:1119–1123

    Article  PubMed  CAS  Google Scholar 

  18. Haverich A, Hagl C (2003) Organ protection during hypothermic circulatory arrest. J Thorac Cardiovasc Surg; 125:460–462

    Article  PubMed  Google Scholar 

  19. Kamiya H, Klima U, Hagl C, et al. (2006) Cerebral microembolization during antegrade selective cerebral perfusion. Ann Thorac Surg; 81:519–521

    Article  PubMed  Google Scholar 

  20. Kazui T, Kimura N, Yamada O, Komatsu S (1994) Surgical outcome of aortic arch aneurysms using selective cerebral perfusion. Ann Thorac Surg; 57:904–911

    Article  PubMed  CAS  Google Scholar 

  21. Khaladj N, Peterss S, Oetjen P, et al. (2006) Hypothermic circulatory arrest with moderate, deep or profound hypothermic selective cerebral perfusion: which temperature provides best brain protection? Eur J Cardiothorac Surg; 30:492–8

    Article  PubMed  Google Scholar 

  22. McCullough JN, Zhang N, Reich DL, et al. (1999) Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg; 67:1895-1899; discussion 1919–1821

    Article  PubMed  CAS  Google Scholar 

  23. Ono T (2001) Fluorescein retinal angiography as an useful method of observing cerebral perfusion during aortic arch surgery. Ann Thorac Surg; 72:978–979

    Article  PubMed  CAS  Google Scholar 

  24. Reich DL, Uysal S, Ergin MA, Griepp RB (2001) Retrograde cerebral perfusion as a method of neuroprotection during thoracic aortic surgery. Ann Thorac Surg; 72:1774–1782

    Article  PubMed  CAS  Google Scholar 

  25. Reich DL, Uysal S, Sliwinski M, et al. (1999) Neuropsychologic outcome after deep hypothermic circulatory arrest in adults. J Thorac Cardiovasc Surg; 117:156-163

    Article  PubMed  CAS  Google Scholar 

  26. Spielvogel D, Etz CD, Silovitz D, Lansman SL, Griepp RB (2007) Aortic arch replacement with a trifurcated graft. Ann Thorac Surg; 83:S791–795; discussion S824–731

    Article  PubMed  Google Scholar 

  27. Strauch JT, Bohme Y, Franke UF, et al. (2005) Selective cerebral perfusion via right axillary artery direct cannulation for aortic arch surgery. Thorac Cardiovasc Surg; 53:334–340

    Article  PubMed  CAS  Google Scholar 

  28. Ueda Y, Miki S, Kusuhara K, et al. (1990) Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch, utilizing circulatory arrest and retrograde cerebral perfusion. J Cardiovasc Surg (Torino); 31:553–558

    CAS  Google Scholar 

  29. Urbanski PP, Lenos A, Lindemann Y, et al. (2006) Carotid artery cannulation in aortic surgery. J Thorac Cardiovasc Surg; 132:1398–1403

    Article  PubMed  Google Scholar 

  30. Wahlgren NG, Ahmed N (2004) Neuroprotection in cerebral ischaemia: facts and fancies – the need for new approaches. Cerebrovasc Dis; 17 Suppl 1:153–166

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hagl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagl, C., Khaladj, N., Peterß, S. et al. Neuroprotektion in der Aortenbogenchirurgie: Experimentelle Untersuchungen und klinische Analyse. Z Herz- Thorax- Gefäßchir 22, 47–55 (2008). https://doi.org/10.1007/s00398-008-0609-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-008-0609-5

Schlüsselwörter

Keywords

Navigation