Skip to main content

Advertisement

Log in

Sternotomie und Kraniotomie mithilfe autonomer Roboter

Experimentelle Evaluation an sieben Schweinen

Sternotomy and craniotomyd by an autonomous robot: Experimental evaluation on seven pigs

  • ORIGINALARBEIT
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Hintergrund

Autonome Roboteraktionen können prinzipiell eine Hilfestellung für die Chirurgie darstellen. Eine systematische Evaluierung steht allerdings aus. Ziel dieser Studie war es, erstmals die Machbarkeit, Sicherheit und Genauigkeit von Sternotomien und Kraniotomien zu untersuchen, die autonom von Robotern durchgeführt wurden.

Methoden

Bei sieben Schweinen wurde der komplette Prozess von der Planung bis hin zur Ausführung der Roboteraktion evaluiert: 3D Bildgebung (Spiral-CT, Schichtdicken von A) 2 vs. 4 mm bzw. B) 1,5 vs. 3 mm), 3D-Lokalisation von Markern, Trajektorienplanung, Matching der Registrierung mit den 3D-Bilddaten, Registrierungsfehler, Effektor-Kräfte (Knochenfräse). Die Robotertrajektorien zur A) medianen Sternotomie und B) Kraniotomie (n=28) wurden autonom durch einen Einarm-Roboter ausgeführt. Eine 3D-Vektoranalyse der geplanten versus der ausgeführten Trajektorien wurde anhand der CT-Bilddaten errechnet (Schichtdicke 1,5 mm). Es wurde eine Kraftbegrenzung von 35 N verwendet.

Ergebnisse

93% der Sternotomien und 86% der Kraniotomien waren als autonome Roboteraktion durchführbar. Es musste kein Not-Stop der Aktion ausgeführt werden. Die Unterschiede in der Detektion der Marker betrugen <2 mm und waren höher in der Kraniotomiegruppe (p<0,05). Der Registrierungsfehler war in der Sternotomiegruppe höher (p=0,03). Die mittlere Abweichung von der berechneten Trajektorie betrug A) 2,59±1,14 mm, B) 2,56±1,21 mm (n.s.). Bei Schichtbilddicken von ≤3 mm betrug die Abweichung von der geplanten Trajektorie 2,51±1,16 vs. 2,66±1,13 mm (Schichtdicken >3 mm) (n.s.). Die größten Kraftwerte traten am Ende der Trajektorien auf (21–44 N).

Schlussfolgerungen

Sicherheit, Machbarkeit und Genauigkeit der Roboteraktionen waren akzeptabel. Diese ersten Evaluierungsdaten könnten als Grundlage zukünftiger Aufgaben im Bereich der autonomen Roboterchirurgie dienen.

Abstract

Background

Autonomous robotic action may facilitate surgery. However, systematic evaluation data are lacking. The purpose of the study was to assess the feasibility, safety, and accuracy of sternotomy and craniotomy performed autonomously by a surgical robot, based on three dimensional (3D) planning.

Methods

In seven domestic pigs, the complete process of planning and robotic action were evaluated: 3D imaging (spiral CT scans, slice thickness (A) 2 mm vs. 4 mm, (B) 1.5 mm vs. 3 mm), 3D localization of markers, trajectory planning, matching of registration with 3D imaging, registration error, and effector forces (milling cutter). Robot milling trajectories for (A) median sternotomy and (B) craniotomy (n=28) were executed autonomously by a one-arm robot. 3D vector analysis of planned vs. executed trajectories was performed on CT scans (slice thickness 1.5 mm). Force limitation (35 N) was used.

Results

Robotic action was feasible in 93% of sternotomies and in 86% of craniotomies. No emergency stop occurred. Differences in marker detection were <2 mm, higher in craniotomies (p<0.05). Registration errors were higher in sternotomies (p=0.03). Mean trajectory deviation was (A) 2.59±1.14 mm, (B) 2.56 +1.21 mm (n.s.). For actions planned on image slices ≤3 mm, deviation was 2.51±1.16 vs 2.66±1.13 mm (slices >3 mm) (n.s.). Maximum forces (21–44 N) occurred at the end of trajectories.

Conclusions

Safety, feasibility and accuracy of the robotic tasks were acceptable. Our data may therefore serve as a base for future autonomic robotic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

3D:

dreidimensional

CABG:

coronary artery bypass grafting

CCD:

charge coupled device

DOF:

degrees of freedom

FTS:

force/torque sensor

INS:

infrared navigation system

LED:

light emitting diode

TECAB:

totally endoscopic coronary artery bypass grafting

TCP:

tool center point

VATS:

video assisted thoracic surgery

Literatur

  1. Gambao E, Balaguer C (2002) Robotics and automation in construction. IEEE Robotics Automat Mag 3:4–6

    Article  Google Scholar 

  2. Börner M, Lahmer A, Baeur A, Stier U (1998) Experiences with the ROBODOC system in more than 1000 cases. In: Lemke H, Vannier M, Inamura K (eds) Computer assisted radiology and surgery. Springer, Berlin Heidelberg New York, pp 689–693

  3. Schermeier O, Lueth T, Cho C, Hildebrand D, Klein M, Nelson K, Bier J (2002) The precision of the RoboDent system – an in vitro study. In: Lemke HU, Inamura K, Farman AG, Doi K, Reiber JHC (eds) Computer assisted radiology and surgery. Springer, Berlin Heidelberg New York, pp 947–952

  4. Horsley V, Clarke RH (1908) The structure and functions of the cerebellum examined by a new method. Brain 31:45–124

    Article  Google Scholar 

  5. Darabi K, Grunert P, Perneczky A (1997) Accuracy of intraoperative navigation using skin markers: In: Lemke H, Vannier M, Inamura K (eds) Computer assisted radiology and surgery. Springer, Berlin Heidelberg New York, pp 921–924

  6. Stefansic JD, Bass WA, Hartmann SL, Beasley RA, Sinha TK, Cash DM, Herline AJ, Galloway RL (2002) Design and implementation of a PCbased image-guided surgical system. Comp Methods Progr Biomed 69:211–224

    Article  Google Scholar 

  7. Austad A, Elle OJ, Aurdal L, Samset E, Fontenelle H, Fosse E, Malvig KE (2002) Collision avoidance in robot assisted surgery. In: Lemke HU, Inamura K, Farman AG, Doi K, Reiber JHC (eds) Computer assisted radiology and surgery. Springer, Berlin Heidelberg New York, pp 80–85

  8. Korb W, Kornfeld M, Birkfellner W, Boesecke R, Figl M, Fuerst M, Kettenbach J, Vogler A, Hassfeld S, Kornreif G (2005) Risk analysis and safety assessment in surgical robotics: A case study on a biopsy robot. Minim Invasive Ther Allied Technol 14(1):23–31

    Article  PubMed  CAS  Google Scholar 

  9. Treat MR, Amory SE, Downey PE, Taliaferro DA (2006) Initial clinical experience with a partly autonomous robotic surgical instrument server. Surg Endosc 20:1310–1314

    Article  PubMed  CAS  Google Scholar 

  10. Engel D, Raczkowsky J, Wörn H (2002) Sensor aided milling with a surgical robot system. In: Lemke HU, Inamura K, Farman AG, Doi K, Reiber JHC (eds) Computer assisted radiology and surgery. Springer, Berlin Heidelberg New York, pp 212–217

  11. Lumelsky VJ, Shur MS, Wagner S (2001) Sensitive skin. IEEE Sensors J 1:41–51

    Article  CAS  Google Scholar 

  12. Cuvillon L, Gangloff J, de Mathelin M, Forgione A (2006) Towards robotized beating heart TECABG: Assessment of the heart dynamics using high-speed vision. Comp Aid Surg 11:267–277

    Article  Google Scholar 

  13. Siciliano B, Villani L (1999) Indirect vs. direct force control. In: Kanade T (ed) Robot force control. Kluwer Academic Publishers, Boston Dordrecht London, pp 2–15

  14. Hollands CM, Dixey LN (2002) Robotic-assisted esophagoesophagostomy. J Pediatr Surg 37:983–985

    Article  PubMed  Google Scholar 

  15. Lorincz A, Langenburg SE, Knight CG, Gidell K, Rabah R, Klein MD (2004) Robotically assisted esophagoesophagostomy in newborn pigs. J Pediatr Surg 39:1386–1389

    Article  PubMed  Google Scholar 

  16. Bakker PF, Budde RP, Grundeman PF (2004) Endoscopic robot-assisted extended thymectomy by subxiphoid approach with sternal lifting: feasibility in the pig. Surg Endosc 18:986–989

    Article  PubMed  CAS  Google Scholar 

  17. Bodner J, Wykypiel H, Wetscher G, Schmid T (2004) First experiences with the da Vinci operating robot in thoracic surgery. Eur J Cardiothorac Surg 25:844–851

    Article  PubMed  CAS  Google Scholar 

  18. Park BJ, Flores RM, Rusch VW (2006) Robotic assistance for videoassisted thoracic surgical lobectomy: technique and initial results. J Thorac Cardiovasc Surg 131:54–59

    Article  PubMed  Google Scholar 

  19. Smith JM, Hassan M, Ignacio R (2006) Robot-assisted isolation of the pulmonary veins with microwave energy. J Card Surg 21:83–88

    Article  PubMed  Google Scholar 

  20. Falk V, Mourgues F, Adhami L, Jacobs S, Thiele H, Nitzsche S, Mohr FW, Coste-Maniere E (2005) Cardio navigation: planning, simulation, and augmented reality in robotic assisted endoscopic bypass grafting. Ann Thorac Surg 79:2040–2047

    Article  PubMed  Google Scholar 

  21. Argenziano M, Katz M, Bonatti J, Srivastava S, Murphy D, Poirier R, Loulmet D, Siwek L, Kreaden U, Ligon D, TECAB Trial Investigators (2006) Results of the prospective multicenter trial of robotically assisted totally endoscopic coronary artery bypass grafting. Ann Thorac Surg 81:1666–1674

    Article  PubMed  Google Scholar 

  22. Katz MR, Van Praet F, de Canniere D, Murphy D, Siwek L, Seshadri-Kreaden U, Friedrich G, Bonatti J (2006) Integrated coronary revascularization: percutaneous coronary intervention plus robotic totally endoscopic coronary artery bypass. Circulation 114 (1 Suppl):I473–I476

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Albers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, J., Schmidt, T., Hassfeld, S. et al. Sternotomie und Kraniotomie mithilfe autonomer Roboter. Z Herz- Thorax- Gefäßchir 21, 266–272 (2007). https://doi.org/10.1007/s00398-007-0599-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-007-0599-8

Schlüsselwörter

Key words

Navigation