Skip to main content

Advertisement

Log in

Pathogenese der Atherosklerose: Evaluation eines Modelles zur In-vitro-Simulation der Plaqueentstehung

Pathogenesis of atherosclerosis: Evaluation of an in vitro model for the simulation of plaque development

  • ÜBERSICHT
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Zur Untersuchung der Pathogenese der Atherosklerose wurden verschiedene In-vitro-Zellkultursysteme entwickelt, die zum Teil auf Mono-, zum Teil auf Kokulturmodellen basieren. In der vorliegenden Arbeit beschreiben wir die Entwicklung eines homologen humanen dreidimensionalen Kokulturmodelles das in Form einer Neo-Intima die menschliche Gefäßwand in vitro nachbildet. Durch Kokultur von humanen glatten Muskelzellen und Endothelzellen in einer Fibrinmatrix konnten charakteristische Elemente der Gefäßwand wie mehrschichtiges Wachstum glatter Muskelzellen, konfluenter Endothelzellmonolayer und Sekretion extrazellulärer Matrix nachgebildet werden. Nach Zugabe von humanem Low Density Lipoprotein war eine dosis- und zeitabhängige Insudation des Lipides subendothelial zu verzeichnen und in Zusammenhang mit der Adhäsion, Transmigration und Schaumzellbildung humaner Monozyten, die mit dem LDL-beladenen Modell inkubiert wurden, konnte die potentielle Eignung dieses Modelles zur Simulation der Plaqueentstehung in vitro gezeigt werden.

Abstract

For the study of the pathogenesis of atherosclerosis, different in vitro models have been developed that are based on the monoor coculture of endothelial and smooth muscle cells. Herein, we describe the development of a three-dimensional homologous coculture model that resembles the human neo-intima. Using coculture of human smooth muscle cells and endothelial cells in a fibrin gel matrix, characteristic features of the human vessel wall, e.g., multilayer growth of smooth muscle cells, confluent luminal endothelial monolayer and extracellular matrix production were achieved. Following addition of human low density lipoprotein to the cell culture medium, a dose- and time-dependent subendothelial insudation of the lipid was noted and human monocytic cells when incubated with the model showed adhesion, transmigration and subendothelial foam cell formation. This review updates the current knowledge of the pathogenesis of atherosclerosis, outlines contemporary models for in vitro research and demonstrates the potential applicability of our model for the simulation of plaque development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJL (2006) Global and regional burden of disease and risk factors 2001: Systematic analysis of population health data. Lancet 367:1747–1757

    Article  PubMed  Google Scholar 

  2. Mathers CD, Bernard C, Iburg K, Inoue M, Ma Fat D, Shibuya K, Stein C, Tomijima N (2003) The Global Burden of Disease in 2002: data sources, methods and results. World Health Organization (GPE Discussion Paper No. 54), Geneva, Switzerland, available at http://www.who.int/evidence

  3. Petersen S, Peto V, Rayner M (2005) European cardiovascular disease statistics, Edition, European Heart Network, Brussels, Belgium

  4. Hansson GK (2005) Inflammation, atherosclerosis and coronary artery disease. N Engl J Med 352:1685–1695

    Article  PubMed  CAS  Google Scholar 

  5. Ross R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340:115–126

    Article  PubMed  CAS  Google Scholar 

  6. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  PubMed  CAS  Google Scholar 

  7. Glass CK, Witztum JL (2001) Atherosclerosis: The road ahead. Cell 104:503–516

    Article  PubMed  CAS  Google Scholar 

  8. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  9. Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8:1211–1217

    Article  PubMed  CAS  Google Scholar 

  10. Libby P (2003) Vascular biology of atherosclerosis: overview and state of the art. Am J Cardiol 91:3A–6A

    Article  PubMed  CAS  Google Scholar 

  11. Ghazalpour A, Doss S, Yang X, Aten J, Toomey EM, Van Nas A, Wang S, Drake TA, Lusis A (2004) Thematic review series: The pathogenesis of atherosclerosis. Toward a biological network for atherosclerosis. J Lipid Res 45:1793–805

    Article  PubMed  CAS  Google Scholar 

  12. Falk E (2006) Pathogenesis of Atherosclerosis. J Am Coll Cardiol 47:C7–12

    Article  PubMed  CAS  Google Scholar 

  13. Lobstein JF (1833) Traite d'Anatomie Pathologique, Paris, 550–553

  14. Marchand F (1904) Über Arteriosklerose, Verhandlungen des Kongresses für Innere Medizin. 21. Kongress, Leipzig 23–59

  15. Virchow R (1852) Ueber parenchymatöse Entzuendung. Archiv für Pathologische Anatomie und Physiologie 4:261–324

    Article  Google Scholar 

  16. Lehr HA, Sagban TA, Kirkpatrick CJ (2002) Atherosklerose – Progression durch unspezifische Aktivierung des Immunsystemes. Med Klin 97:229–235

    Article  CAS  Google Scholar 

  17. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A Definition of initial, fatty streak, and intermediate lesions of atherosclerosis: A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation 89:2462–2478

    PubMed  CAS  Google Scholar 

  18. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RWA (1995) Definition of advanced types of atherosclerosic lesions and a histologicaal classification of atherosclerosis: A report from the committee on vascular lesions of the council on arteriosclerosis, American heart association. Circulation 92:1355–1374

    PubMed  CAS  Google Scholar 

  19. Stary HC (2000) Natural history and histological classification of atherosclerotic lesions. An update. Art Thromb Vasc Biol 20:1177–1178

    CAS  Google Scholar 

  20. Ross R (1986) The pathogenesis of atherosclerosis-an update. N Engl J Med 314:488–500

    Article  PubMed  CAS  Google Scholar 

  21. Williams KJ, Tabas I (1998) The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 9:471–474

    Article  PubMed  CAS  Google Scholar 

  22. Williams KJ, Tabas I (2005) Lipoprotein retention – and clues for atheroma regression. Arterioscler Thromb Vasc Biol 25:1536–1540

    Article  PubMed  CAS  Google Scholar 

  23. Tabas I, Williams KJ, Boren J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844

    Article  PubMed  CAS  Google Scholar 

  24. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, Boren J (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754

    Article  PubMed  CAS  Google Scholar 

  25. Brown MS, Goldstein JL (1976) Receptor mediated control of cholesterol metabolism. Science 191:150–154

    Article  PubMed  CAS  Google Scholar 

  26. Brown MS, Goldstein JL, Krieger M, Ho YK, Anderson RW (1979) Reversible Accumulation of Cholesteryl Esters in Macrophages incubated with Acetylated Lipoproteins. J Cell Biol 82:597–613

    Article  PubMed  CAS  Google Scholar 

  27. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA (1980) Malondialdehye alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci 77:2214–2218

    Article  PubMed  CAS  Google Scholar 

  28. Cardin AD, Witt KR, Chao J, Margolius HS, Donaldson VH, Jackson RL (1984) Degradation of Apolipoprotein B-100 of Human Plasma Low Density Lipoproteins by Tissue and Plasma Kallikreins. J Biol Chem 259:8522–8528

    PubMed  CAS  Google Scholar 

  29. Chao FF, Amende LM, Blanchette-Mackie EJ, Skarlatos SI, Gamble W, Resau JH, Mergner WT, Kruth HS (1988) Unesterified cholesterol-rich lipid particles in atherosclerotic lesions of human and rabbit aortas. Am J Pathol 131:73–83

    PubMed  CAS  Google Scholar 

  30. Orekhov AN, Tertov VV, Mukhin DN (1991) Desialylated low density lipoprotein-naturally occurring modified lipoprotein with atherogenic potency. Atherosclerosis 86:153–161

    Article  PubMed  CAS  Google Scholar 

  31. Xu XX, Tabas I (1991) Sphingomyelinase enhances Low Density Lipoprotein uptake and ability to induce Cholesteryl Ester Accumulation in Macrophages. J Biol Chem 266:24849–24858

    PubMed  CAS  Google Scholar 

  32. Krieger M, Herz J (1994) Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 63:601–637

    PubMed  CAS  Google Scholar 

  33. Kodama T, Freeman L, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343:531–535

    Article  PubMed  CAS  Google Scholar 

  34. Gordon S (2005) Recent insights into the biology of macrophage scavenger receptors. J Lipid Research 46:11–20

    Google Scholar 

  35. Platt N, Gordon S (2001) Is the class A macrophage scavenger receptor (SR-A) multifunctional? The mouse's tale. J Clin Invest 108:649–654

    Article  PubMed  CAS  Google Scholar 

  36. Kruth HS, Huang W, Ishii I, Zhang WY (2002) Macrophage foam cell formation with native Low density lipoprotein. J Biol Chem 277:34573–34580

    Article  PubMed  CAS  Google Scholar 

  37. Haberland ME, Fogelman AM, Edwards PA (1982) Specificity of receptor-mediated recognition of malon-dialdehyde-modified low density lipoproteins. Proc Natl Acad Sci 79:1712–1716

    Article  PubMed  CAS  Google Scholar 

  38. Steinberg D (1997) Low Density Lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966

    Article  PubMed  CAS  Google Scholar 

  39. Brown BG, Cheung MC, Lee AC, Zhao XQ, Chait A (2002) Antioxidant vitamins and lipid therapy: end of a long romance? Arterioscler Thromb Vasc Biol 22:1535–1546

    Article  PubMed  CAS  Google Scholar 

  40. MRC/BHF (2002) Heart protection study of cholesterol lowering with simvastatin in 20536 high-risk individuals: A randomized placebo-controlled trial. Lancet 360:7–22

    Article  Google Scholar 

  41. Niculescu F, Rus H (2004) The role of complement activation in atherosclerosis. Immunol Res 30:73–80

    Article  PubMed  CAS  Google Scholar 

  42. Oksjoki R, Kovanen PT, Meri S, Pentikainen MO (2007) Function and regulation of the complement system in cardiovascular diseases. Front Biosci 12:4696–4708

    Article  PubMed  CAS  Google Scholar 

  43. Bhakdi S, Lackner KJ, Han SR, Torzewski M, Husmann M (2004) Beyond cholesterol: the enigma of atherosclerosis revisited. Thromb Haemost 91:639–645

    PubMed  CAS  Google Scholar 

  44. Vlaicu R, Rus HG, Niculescu F, Cristea A (1985) Immunoglobulins and Complement Components in Human Aortic Atherosclerotic Intima. Atherosclerosis 55:35–50

    Article  PubMed  CAS  Google Scholar 

  45. Geertinger P, Sorensen H (1975) On the reduced atherogenic effect of cholesterol feeding on rabbits with congenital complement (C6) deficiency. Artery 1:177–184

    CAS  Google Scholar 

  46. Schmiedt W, Kinscherf R, Deigner HP, Kamencic H, Nauen O, Kilo J, Oelert H, Metz J, Bhakdi S (1998) Complement C6 deficiency protects against diet-induced atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 18:1790–1795

    PubMed  CAS  Google Scholar 

  47. Seifert PS, Hugo F, Tranum-Jensen J, Zähringer U, Muhly M, Bhakdi S (1990) Isolation and characterization of a complement-activating lipid extracted from human atherosclerotic lesions. J Exp Med 172:547–557

    Article  PubMed  CAS  Google Scholar 

  48. Bhakdi S, Dorweiler B, Kirchmann R, Torzewski J, Weise E, Tranum-Jensen J, Walev I, Wieland E (1995) On the pathogenesis of atherosclerosis: enzymatic transformation of human low density lipoprotein to an atherogenic moiety. J Exp Med 182:1959–1971

    Article  PubMed  CAS  Google Scholar 

  49. Wieland E, Dorweiler B, Bonitz U, Lieser S, Walev I, Bhakdi S (1999) Complement activation by oxidatively modified low-density lipoproteins. Eur J Clin Invest 29:835–841

    Article  PubMed  CAS  Google Scholar 

  50. Torzewski M, Lackner KJ (2006) Initiation and progression of atherosclerosis – enzymatic or oxidative modification of low-density lipoprotein? Clin Chem Lab Med 44:1389–1394

    Article  PubMed  CAS  Google Scholar 

  51. Ross R (1971) The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 50:172–186

    Article  PubMed  CAS  Google Scholar 

  52. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  PubMed  CAS  Google Scholar 

  53. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  54. Lavik E, Langer R (2004) Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 65:1–8

    Article  PubMed  CAS  Google Scholar 

  55. Campbell GR, Campbell JH (2007) Development of tissue engineered vascular grafts. Curr Pharm Biotechnol 8:43–50

    Article  PubMed  CAS  Google Scholar 

  56. Wang X, Lin P, Yao Q, Chen C (2007) Development of small-diameter vascular grafts. World J Surg 31:682–689

    Article  PubMed  Google Scholar 

  57. Jones PA (1979) Construction of an artificial blood vessel wall from cultured endothelial and smooth muscle cells. Proc Natl Acad Sci USA 76:1882–1886

    Article  PubMed  CAS  Google Scholar 

  58. Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Article  PubMed  CAS  Google Scholar 

  59. L'Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56

    PubMed  Google Scholar 

  60. L'Heureux N, Duserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NAF, Kyles CR, Gregory CR, Hoyt G, Robbins RC, McAllister TN (2006) Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med 12:361–365

    Article  PubMed  CAS  Google Scholar 

  61. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  PubMed  CAS  Google Scholar 

  62. Niklason LE, Abbott W, Gao J, Klagges B, Hirschi KK, Ulubayram K, Conroy N, Jones R, Vasanawala A, Sanzgiri S, Langer R (2001) Morphologic and mechanical characteristics of engineered bovine arteries. J Vasc Surg 33:628–638

    Article  PubMed  CAS  Google Scholar 

  63. Zund G, Hoerstrup SP, Schoeberlein A, Lachat M, Uhlschmid G, Vogt PR, Turina M (1998) Tissue engineering: A new approach in cardiovascular surgery; Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothor Surg 13:160–164

    Article  CAS  Google Scholar 

  64. Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran AM, Landis W, Langer R, Vacanti JP, Mayer JE Jr (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68:2298–2304

    Article  PubMed  CAS  Google Scholar 

  65. Jiao XY, Kopp J, Tanczos E, Vogt M, Stark GB (1998) Cultured keratinocytes suspended in fibrin glue to cover full thickness wounds on athymic nude mice. Eur J Plast Surg 21:72–76

    Article  Google Scholar 

  66. Haisch A, Schultz O, Perka C, Jahnke V, Burmester GR (1996) Tissue-engineering humanen Knorpelgewebes für die rekonstruktive Chirurgie unter Verwendung biokompatibler resorbierbarer Fibringel- und Polymervliesstrukturen. HNO 44:624–629

    Article  PubMed  CAS  Google Scholar 

  67. Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M (2000) Fibrin gel as a threedimensional matrix in cardiovascular tissue engineering. Eur J Cardiothor Surg 17:587–591

    Article  CAS  Google Scholar 

  68. Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L, Messmer BJ, Turina M (2001) Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothor Surg 19:424–430

    Article  CAS  Google Scholar 

  69. Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR (2002) Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs) J Cell Sci 115:3427–3438

    PubMed  CAS  Google Scholar 

  70. Babaei S, Stewart DJ (2002) Overexpression of endothelial NO synthase induces angiogenesis in a co-culture model. Cardiovasc Res 55:190–200

    Article  PubMed  CAS  Google Scholar 

  71. Ikari Y, Fujikawa K, Yee KO, Schwartz SM. (2000) Alpha(1)-proteinase inhibitor, alpha(1)-antichymotrypsin, or alpha(2)-macroglobulin is required for vascular smooth muscle cell spreading in three-dimensional fibrin gel. J Biol Chem 275:12799–12805

    Article  PubMed  CAS  Google Scholar 

  72. Teichert-Kuliszewska K, Maisonpierre PC, Jones N, Campbell AI, Master Z, Bendeck MP, Alitalo K, Dumont DJ, Yancopoulos GD, Stewart DJ (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49:659–670

    Article  PubMed  CAS  Google Scholar 

  73. Aper T, Teebken OE, Steinhoff G, Haverich A (2004) Use of a fibrin preparation in the engineering of a vascular graft model. Eur J Vasc Endovasc Surg 28:296–302

    Article  PubMed  CAS  Google Scholar 

  74. Aper T, Schmidt A, Duchrow M, Bruch HP (2007) Autologous blood vessels engineered from peripheral blood sample. Eur J Vasc Endovasc Surg 33:33–39

    Article  PubMed  CAS  Google Scholar 

  75. Swartz DA, Russell JA, Andreadis ST (2005) Engineering of fibrin-based functional and implantable smalldiameter blood vessels. Am J Physiol Heart Circ Physiol 288:H1451–1460

    Article  PubMed  CAS  Google Scholar 

  76. Navab M, Hough GP, Stevenson LW, Drinkwater DC, Laks H, Fogelman AM (1988) Monocyte migration into the subendothelial space of a coculture of adult human aortic endothelial and smooth muscle cells. J Clin Invest 82:1853–1863

    PubMed  CAS  Google Scholar 

  77. Axel DI, Brehm BR, Wolburg-Buchholz K, Betz EL, Koveker G, and Karsch KR (1996) Induction of cellrich and lipid-rich plaques in a transfilter coculture system with human vascular cells. J Vasc Res 33:327–339

    PubMed  CAS  Google Scholar 

  78. Takaku M, Wada Y, Jinnouchi K, Takeya M, Takahashi K, Usuda H, Naito M, Kurihara H, Yazaki Y, Kumazawa Y, Okimoto Y, Umetani M, Noguchi N, Niki E, Hamakubo T, Kodama T (1999) An in vitro coculture model of transmigrant monocytes and foam cell formation. Art Thromb Vasc Biol 19:2330–2339

    CAS  Google Scholar 

  79. Grassl ED, Oegema TR, Tranquillo RT (2002) Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J Biomed Mater Res 60:607–612

    Article  PubMed  CAS  Google Scholar 

  80. Larson DM, Haudenschild CC, Beyer EC (1990) Gap junction messenger RNA expression by vascular wall cells. Circ Res 66:1074–1080

    PubMed  CAS  Google Scholar 

  81. Navab M, Liao F, Hough GP, Ross LA, Van Lenten BJ, Rajavashisth TB, Lusis AJ, Laks H, Drinkwater DC, Fogelman AM (1991) Interaction of monocytes with cocultures of human aortic wall cells involves interleukins 1 and 6 with marked increases in connexin43 message. J Clin Invest 87:1763–1772

    PubMed  CAS  Google Scholar 

  82. Laird DW, Puranam KL, Revel JP (1991) Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273:67–72

    PubMed  CAS  Google Scholar 

  83. Gospodarowicz D, Greenburg G, Foidart JM, Savion N (1981) The production and localization of laminin in cultured vascular and corneal endothelial cells. J Cell Physiol 107:171–183

    Article  PubMed  CAS  Google Scholar 

  84. Raines EW (2000) The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol 81:173–182

    Article  PubMed  CAS  Google Scholar 

  85. Davidson JM, LuValle PA, Zoia O, Quaglino D Jr, Giro M (1997) Ascorbate differentially regulates elastin and collagen biosynthesis in vascular smooth muscle cells and skin fibroblasts by pretranslational mechanisms. J Biol Chem 272:345–352

    Article  PubMed  CAS  Google Scholar 

  86. Yoshida T, Owens GK (2005) Molecular determinants of vascular smooth muscle cell diversity. Circ Res 96:280–291

    Article  PubMed  CAS  Google Scholar 

  87. Smith EB, Staples EM (1980) Distribution of plasma proteins across the human aortic wall–barrier functions of endothelium and internal elastic lamina. Atherosclerosis 37:579–590

    Article  PubMed  CAS  Google Scholar 

  88. Chobanian AV, Menzoian JO, Shipman J, Heath K, Haudenschild CC (1983) Effects of endothelial denudation and cholesterol feeding on in vivo transport of albumin, glucose, and water across rabbit carotid artery. Circ Res 53:805–814

    PubMed  CAS  Google Scholar 

  89. Ramirez CA, Colton CK, Smith KA, Stemerman MB, Lees RS (1984) Transport of 125I-albumin across normal and deendothelialized rabbit thoracic aorta in vivo. Arteriosclerosis 4:283–291

    PubMed  CAS  Google Scholar 

  90. Scheithe R, Hrboticky N, Ziegler-Heitbrock HW, Weber PC (1994) Receptorspecific uptake and degradation of acetylated, oxidized and native LDL in the human monocytic Mono-Mac 6 cell line. Biochem Biophys Res Commun 202:334–339

    Article  PubMed  CAS  Google Scholar 

  91. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    Article  PubMed  CAS  Google Scholar 

  92. Braunersreuther V, Mach F, Steffens S (2007) The specific role of chemokines in atherosclerosis. Thromb Haemost 97:714–721

    PubMed  CAS  Google Scholar 

  93. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr, Luster AD, Luscinskas FW, Rosenzweig A (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723

    Article  PubMed  CAS  Google Scholar 

  94. Ryoo SW, Kim DU, Won M, Chung KS, Jang YJ, Oh GT, Park SK, Maeng PJ, Yoo HS, Hoe KL (2004) Native LDL induces interleukin-8 expression via H2O2, p38 Kinase and activator protein-1 in human aortic smooth muscle cells. Cardiovasc Res 62:185–193

    Article  PubMed  CAS  Google Scholar 

  95. Dorweiler B, Torzewski M, Dahm M, Ochsenhirt V, Lehr HA, Lackner KJ, Vahl CF (2006) A novel in vitro model for the study of plaque development in atherosclerosis. Thromb Haemostas 95:182–189

    CAS  Google Scholar 

  96. Zadelaar S, Kleemann R, Verschuren L, De Vries-Van der Weij J, van der Hoorn J, Princen HM, Kooistra T (2007) Mouse models for atherosclerosis and pharmaceutical modifiers. Art Thromb Vasc Biol 27:1706–1721

    Article  CAS  Google Scholar 

  97. Sheth SS, Deluna A, Allayee H, Lusis AJ (2002) Understanding atherosclerosis through mouse genetics. Curr Opin Lipidol 13:181–189

    Article  PubMed  CAS  Google Scholar 

  98. Lutgens E, van Suylen RJ, Faber B, Gijbels MJ, Eurlings PM, Bijnens AP, Cleutjens KB, Heeneman S, Daemen MJAP (2003) Atherosclerotic plaque rupture – Local or systemic process? Art Thromb Vasc Biol 23:2123–2130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Dorweiler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorweiler, B., Vahl, CF. Pathogenese der Atherosklerose: Evaluation eines Modelles zur In-vitro-Simulation der Plaqueentstehung. Z Herz- Thorax- Gefäßchir 21, 225–235 (2007). https://doi.org/10.1007/s00398-007-0596-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-007-0596-y

Schlüsselwörter

Key words

Navigation