Skip to main content

Advertisement

Log in

Pathomorphologische Befunde nach Herztransplantation

Eine Monocenterstudie an 15.571 rechtsventrikulären Endomyokardbiopsieproben

Pathomorphological findings after heart transplantation: single center experience with 15,571 right ventricular biopsies

  • ORIGINALARBEIT
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Hintergrund

Neben der zellulären Abstoßungsdiagnostik bietet die histologische Untersuchung von rechtsventrikulären Myokardbiopsieproben (Bx) die Möglichkeit, Erkenntnisse über strukturelle Adaptationsprozesse zu gewinnen, die mit einer Herztransplantation (HTx)Transplantation einhergehen.

Material & Methoden

Zwischen 04/86 und 12/02 unterzogen sich 1.351 Patienten (mittleres Alter 46±15 Jahre, Männer=1.074, dKMP=803, KHK=362, Klappenerkrankung=48, andere=134) einer HTx. Von diesen Patienten wurden insgesamt 15.571 Bx lichtmikroskopisch auf das Bestehen einer akuten zellulären Rejektion (ACR, gemäß ISHLT) bzw. eines Quilty-Phänomens untersucht. Zusätzlich wurden immunhistochemische Untersuchungen (Avidin-Streptavidin-Methode) von T-Zellen (CD3, Klon SP7, DCS Innovative Diagnostik), Endothelzellen (CD31, Klon JC/70A, Dako) und vaskulären glatten Muskelzellen (α-Aktin, Klon 1A4, Dako) durchgeführt. Qualitative und quantitative Untersuchungen wurden zum Gehalt an Fibrose, Größe und Form der Herzmuskelzellen sowie vaskulärer Texturveränderungen durchgeführt. Die statistische Auswertung erfolgte anhand nicht-parametrischer Tests.

Ergebnisse

In 68% (N=10.544) der Bx fand sich kein Anhalt für ACR, ISHLT-Grade 1A-2 fanden sich in 23% (N=3.611), 3A und 3B in 7% (N=1.076) und Grad 4A und 4B in <1% (N=4) der Bx. 2% (N=307) der Bx wurden als nicht repräsentativ eingestuft. In Bx mit dem ISHLT-Grad „0“ fand sich bei 50% der Proben der immunhistochemische Nachweis von T-Zellen und in 10% ein Quilty-Phänomen. 10% der Bx wiesen morphologische Zeichen der mikrovaskulären TVP auf und bei 37% bestanden morphologische Hinweise auf das Vorliegen einer TVP. Der Fibrosegehalt (10–14%) der Bx zeigte keine statistisch relevante Veränderung im Zeitverlauf nach HTx.

Schlussfolgerungen

Immunhistochemische Untersuchungen sollten routinemäßig in Bx nach HTx durchgeführt werden. Das diagnostische Profil und die Indikation dieser Bx sollte durch die Graduierung vaskulärer Texturveränderungen und ihrer Folgen, sowie um eine Risikoabschätzung für das Überleben erweitert werden.

Summary

Background

Histological evaluation of right ventricular endomyocardial biopsies (Bx) is the gold standard for diagnosis of acute cellular rejection (ACR) after heart transplantation (HTx). Routine Bx also permit the description and evaluation of adaptative processes, i. e., vascular and myocardial textural changes, associated with the transplantation process.

Material & methods

A total of 15,571 Bx from 1,351 patients (mean age 46±15 yrs, male=1,074, female=277, dCMP=803, CAD=362, valvular disease=48, others=134) undergoing HTx between 04/86 and 12/02 were evaluated by light microscopy for ACR (according to ISHLT) and the Quilty phenomenon. Testing for immunohistochemical reactions (avidin-streptavidin method) to T-cells (CD3, clone SP7, DCS Innovative Diagnostik), endothelial cells (CD31, Klon JC/70A, Dako) and vascular smooth muscle cells (α-actin, clone 1A4, Dako) was performed. Qualitative and quantitative analysis was done for blood vessel structure, fibrosis, size and hypertrophy of heart muscle cells. All data were analyzed using non-parametric tests (p<0.05).

Results

In 68% (N=10,544) of Bx there was no evidence of acute cellular rejection, ISHLT grade 1A-2 was present in 23% (N=3,611), 3A and 3B in 7% (N=1,076) and grade 4A und 4B in <1% (N=4) of Bx. In total, 2% (N=307) of Bx were not suitable for further morphological evaluation. In 50% of Bx graded as showing no ACR according to the ISHLT scale there was positive immunohistochemical reaction for T cells and in 10% evidence of the Quilty phenomenon. Microvascular disease was present in 10% of Bx and in additional 37% of Bx microvasculopathy was suspected. In Bx vascularization was as follows: arterioles 103±31/mm2, capillaries 685±129/mm2, and ratio of capillaries to arterioles 13±6/mm2. Patients with evidence of microvasculopathy had more α-actin-positive blood vessels (147±47/ mm2 vs. 59±16/mm2, p<0.05), fewer capillaries (574±212/mm2 vs. 724±144/mm2, p<0.05) and a smaller ratio of capillaries to arterioles (9±6/mm2 vs. 16±5/mm2, p<0.05) than patients without. The amount of fibrosis in Bx (10–14%) did not change during the post-transplant period. The mean number of cardiac myocytes accounted for 440±89/mm2 and the mean area of cardiac myocytes was 2,060±452 μm2.

Conclusions

After HTx cell-mediated immunological reactions between the recipient and the graft are not necessarily associated with myocardial damage and/or lymphocyte infiltrates. Therefore we recommend routine immunohistochemical investigations in Bx after HTx. Microvasculopathy may be diagnosed in Bx after HTx using routine tissue processing methods, and its major targets have to be redefined by grading vascular textural changes with subsequent risk stratification for severe adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Angelini A, Thiene G, Boffa GM, Calliari I, Daliento L, Valente M, Chioin R, Nava A, Volta SD, Calliaris I (1993) Endomyocardial biopsy in right ventricular cardiomyopathy. Int J Cardiol 40:273–282

    Article  PubMed  Google Scholar 

  2. Armstrong AT, Binkley PF, Baker PB, Myerowitz PD, Leier CV (1998) Quantitative investigation of cardiomyocyte hypertrophy and myocardial fibrosis over 6 years after cardiac transplantation. J Am Coll Cardiol 32:704–710

    Article  PubMed  Google Scholar 

  3. Billingham ME, Cary NR, Hammond ME, Kemnitz J, Marboe C, McCallister HA, Snovar DC, Winters GL, Zerbe A (1990) A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transplant 9:587–593

    PubMed  Google Scholar 

  4. Brann WM, Bennett LE, Keck BM, Hosenpud JD (1998) Morbidity, functional status, and immunosuppressive therapy after heart transplantation: an analysis of the joint International Society for Heart and Lung Transplantation/United Network for Organ Sharing Thoracic Registry. J Heart Lung Transplant 17:374–382

    PubMed  Google Scholar 

  5. Chetty R, Gatter K (1994) CD3: structure, function, and role of immunostaining in clinical practice. J Pathol 173:303–307

    Article  PubMed  Google Scholar 

  6. Comer KA, Dennis PA, Armstrong L, Catino JJ, Kastan MB, Kumar CC (1998) Human smooth muscle alphaactin gene is a transcriptional target of the p53 tumor suppressor protein. Oncogene 16:1299–1308

    Article  PubMed  Google Scholar 

  7. Dandel M, Hummel M, Muller J, Meyer R, Ewert R, Hetzer R (2001) Wall motion assessment by tissue Doppler imaging after heart transplantation: timing of endomyocardial biopsies and facilitation of therapeutic decisions during acute cardiac rejection. J Heart Lung Transplant 20:213

    Article  Google Scholar 

  8. Dittrich HC, Shabetai R (1997) Myocardial Biopsy—Techniques, Indications, and Complications. W.B. Saunders Company, Philadelphia, pp 266–272

  9. Foerster A (1992) Vascular rejection in cardiac transplantation. A morphological study of 25 human cardiac allografts. Apmis 100:367–376

    PubMed  Google Scholar 

  10. Forbes RD, Rowan RA, Billingham ME (1990) Endocardial infiltrates in human heart transplants: a serial biopsy analysis comparing four immunosuppression protocols. Hum Pathol 21:850–855

    Article  PubMed  Google Scholar 

  11. Gopal S, Narasimhan U, Day JD, Gao R, Kasper EK, Chen CL, Cina S, Robertson AL, Hruban RH (1998) The Quilty lesion enigma: focal apoptosis/necrosis and lymphocyte subsets in human cardiac allografts. Pathol Int 48:191–198

    PubMed  Google Scholar 

  12. Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B et al. (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. Apmis 96:857–881

    PubMed  Google Scholar 

  13. Hiemann NE, Meyer R, Hummel M, Wellnhofer E, Thomann S, Hetzer R (2004) Role of B Cells and macrophages in microvascular disease after heart transplantation. Thoracic and Cardiovascular Surgeon 52:16–22

    Article  PubMed  Google Scholar 

  14. Hiemann NE, Meyer R, Wellnhofer E Hetzer R (2002) Correlation of Vascular Reaction in Endomyocardial Biopsies with Micro- and Macrovascular Graft Vessel Disease after Heart Transplantation. Graft 5:173–178

    Article  Google Scholar 

  15. Hiemann NE, Musci M, Wellnhofer E, Meyer R, Hetzer R (1999) Light microscopic biopsy findings after heart transplantation and possible links to development of graft vessel disease. Transplant Proc 31:149–151

    Article  PubMed  Google Scholar 

  16. Hsu SM, Raine L Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  Google Scholar 

  17. Li LX, Nohara R, Okuda K, Hosokawa R, Hata T, Tanaka M, Matsumori A, Fujita M, Tamaki N, Konishi J, Sasayama S (1996) Comparative study of 201Tl-scintigraphic image and myocardial pathologic findings in patients with dilated cardiomyopathy. Ann Nucl Med 10:307–314

    PubMed  Google Scholar 

  18. Mandarim-de-Lacerda CA, das Santos MB, Le Floch-Prigent P, Narcy F (1997) Stereology of the myocardium in human foetuses. Early Hum Dev 48:249–259

    Article  PubMed  Google Scholar 

  19. Mundhenke M, Schwartzkopff B, Strauer BE (1997) Structural analysis of arteriolar and myocardial remodelling in the subendocardial region of patients with hypertensive heart disease and hypertrophic cardiomyopathy. Virchows Arch 431:265–273

    Article  PubMed  Google Scholar 

  20. Newman PJ (1994) The role of PECAM-1 in vascular cell biology. Ann NY Acad Sci 714:165–174

    PubMed  Google Scholar 

  21. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Article  PubMed  Google Scholar 

  22. Papetti M, Shujath J, Riley KN, Herman IM (2003) FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest Ophthalmol Vis Sci 44:4994–5005

    Article  PubMed  Google Scholar 

  23. Pardo Mindan FJ, Panizo A, Lozano MD, Herreros J, Mejia S (1997) Role of endomyocardial biopsy in the diagnosis of chronic rejection in human heart transplantation. Clin Transplant 11:426–431

    PubMed  Google Scholar 

  24. Pardo-Mindan FJ, Lozano MD, Contreras-Mejuto F de Alava E (1992) Pathology of heart transplant through endomyocardial biopsy. Semin Diagn Pathol 9:238–248

    PubMed  Google Scholar 

  25. Parums DV, Cordell JL, Micklem K, Heryet AR, Gatter KC, Mason DY (1990) JC70: a new monoclonal antibody that detects vascular endothelium associated antigen on routinely processed tissue sections. J Clin Pathol 43:752–757

    PubMed  Google Scholar 

  26. Patel JK, Ro T, Fishbein MC, Oeser BT, Marquez A, Laks H, Kobashigawa JA (2005) Justification of the newly proposed ISHLT biopsy grading scale by combining grades 1A, 1B, and 2 into one mild rejection grade. J Heart Lung Transplant 24:S66

    Article  Google Scholar 

  27. Pereira LM, Vianna GM, Mandarimde-Lacerda CA (1998) [Morphology and stereology of the myocardium in hypertensive rats. Correlation with the time of nitric oxide synthesis inhibition]. Arq Bras Cardiol 70:397–402

    Article  PubMed  Google Scholar 

  28. Radio SJ, McManus BM, Winters GL, Kendall TJ, Wilson JE, Costanzo-Nordin MR, Ye YL (1991) Preferential endocardial residence of B-cells in the “Quilty effect” of human heart allografts: immunohistochemical distinction from rejection. Mod Pathol 4:654–660

    PubMed  Google Scholar 

  29. Rose AG, Uys CJ, Losman JG, Barnard CN (1978) Evaluation of endomyocardial biopsy in the diagnosis of cardiac rejection. A study using bioptome samples of formalin-fixed tissue. Transplantation 26:10–13

    PubMed  Google Scholar 

  30. Rossi MA (1998) Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens 16:1031–1041

    Article  PubMed  Google Scholar 

  31. Rowan RA, Billingham ME (1990) Pathologic changes in the long-term transplanted heart: a morphometric study of myocardial hypertrophy, vascularity, and fibrosis. Hum Pathol 21:767–772

    Article  PubMed  Google Scholar 

  32. Schimmenti LA, Yan HC, Madri JA, Albelda SM (1992) Platelet endothelial cell adhesion molecule, PECAM-1, modulates cell migration. J Cell Physiol 153:417–428

    Article  PubMed  Google Scholar 

  33. Schwarz F, Mall G, Zebe H, Schmitzer E, Manthey J, Scheurlen H, Kubler W (1984) Determinants of survival in patients with congestive cardiomyopathy: quantitative morphologic findings and left ventricular hemodynamics. Circulation 70:923–928

    PubMed  Google Scholar 

  34. Sieczkiewicz GJ, Herman IM (2003) TGF-beta 1 signaling controls retinal pericyte contractile protein expression. Microvasc Res 66:190–196

    Article  PubMed  Google Scholar 

  35. Steward M, Bishop R, Piggott NH, Milton ID, Angus B, Horne CH (1997) Production and characterization of a new monoclonal antibody effective in recognizing the CD3 T-cell associated antigen in formalin-fixed embedded tissue. Histopathology 30:16–22

    Article  PubMed  Google Scholar 

  36. Tanaka H, Swanson SJ, Sukhova G, Schoen FJ, Libby P (1995) Early proliferation of medial smooth muscle cells in coronary arteries of rabbit cardiac allografts during immunosuppression with cyclosporine A. Transplant Proc 27:2062–2065

    PubMed  Google Scholar 

  37. Taylor DO, Edwards LB, Boucek MM, Trulock EP, Keck BM Hertz MI (2004) The Registry of the International Society for Heart and Lung Transplantation: twenty-first official adult heart transplant report–2004. J Heart Lung Transplant 23:796–803

    Article  PubMed  Google Scholar 

  38. Verbeek MM, Otte-Holler I, Wesseling P, Ruiter DJ, de Waal RM (1994) Induction of alpha-smooth muscle actin expression in cultured human brain pericytes by transforming growth factor-beta 1. Am J Pathol 144:372–382

    PubMed  Google Scholar 

  39. Vliegen HW, van der Laarse A, Huysman JA, Wijnvoord EC, Mentar M, Cornelisse CJ, Eulderink F (1987) Morphometric quantification of myocyte dimensions validated in normal growing rat hearts and applied to hypertrophic human hearts. Cardiovasc Res 21:352–357

    PubMed  Google Scholar 

  40. Warnecke H, Schuler S, Goetze HJ, Matheis G, Suthoff U, Muller J, Tietze U, Hetzer R (1986) Noninvasive monitoring of cardiac allograft rejection by intramyocardial electrogram recordings. Circulation 74:III72–76

    PubMed  Google Scholar 

  41. Weis M, von Scheidt W (1997) Cardiac allograft vasculopathy: a review. Circulation 96:2069–2077

    PubMed  Google Scholar 

  42. Yamani MH, Tuzcu EM, Starling RC, Young JB, Cook DJ, Haji SA, Abdo A, Crowe T, Hobbs R, Rincon G, Bott-Silverman C, McCarthy PM, Ratliff NB (2002) Computerized scoring of histopathology for predicting coronary vasculopathy, validated by intravascular ultrasound. J Heart Lung Transplant 21:850–859

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiemann, N.E., Hetzer, R. & Meyer, R. Pathomorphologische Befunde nach Herztransplantation. Z Herz- Thorax- Gefäßchir 19, 209–217 (2005). https://doi.org/10.1007/s00398-005-0508-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-005-0508-y

Schlüsselwörter

Key words

Navigation