Skip to main content

Advertisement

Log in

Auswirkungen der extracorporalen Zirkulation (EKZ) auf das Gerinnungssystem und die Fibrinolysekaskade

Mögliche Korrelationen zu Inflammationsreaktionen

The influence of extracorporeal circulation (ECC) on the coagulation and the fibrinolytic cascade—correlation to inflammatory reactions?

  • ORIGINALARBEIT
  • Published:
Zeitschrift für Herz-, Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Hintergrund

Der Einsatz der extracorporalen Zirkulation in der offenen Herzchirurgie bedingt Veränderungen im Bereich der Hämostase. Der Kontakt zu Fremdoberflächen wird häufig für akute mit Inflammationsreaktionen vergleichbare Veränderungen verantwortlich gemacht. Bei einigen Patienten scheint dieses Post-Perfusions-Syndrom (PPS) der Anfang eines SIRS zu sein. Deshalb haben wir in der vorliegenden Studie die Kaskaden des Gerinnungssystems und der Fibrinolyse unter und nach Bedingungen der EKZ unter besonderer Berücksichtigung von Prostazyklin und Aprotinin untersucht.

Methoden

In einer prospektiv randomisierten Studie wurden 40 Patienten, die sich einer aorto-coronaren Bypassoperation unterziehen mussten, in 4 Gruppen a 10 Patienten jeweils abhängig von der Behandlung mit PGI2 und/oder Aprotinin eingeteilt. Pro Patient wurden perioperativ 6 Blutproben entnommen und die Entzündungsparameter sowie die Gerinnungs- und Fibrinolyseparameter bestimmt.

Ergebnisse

Signifikante Unterschiede konnten für Thrombozyten, tPA, D-Dimere, PAI-, α2-antiplasmin- und die Plasminogen-Aktivität ermittelt werden. In der Aprotinin-Gruppe wurden significant geringere Werte für TAT-Komplexe während der EKZ bestimmt. Erniedrigte Werte von PF4 und β-TG während EKZ zeigten sich nur bei Patienten mit PGI2- und Aprotinin-Behandlung. In allen Untersuchungen zeigten sich erhöhte Werte für Elastase in Korrelation mit abfallender AT-III-Aktivität. Bei Patienten mit einem postoperativen PPS oder SIRS zeigten sich signifikant höhere Elastase-Werte.

Schlussfolgerungen

Die Aktivierung der Fibrinolyse während EKZ scheint eine der wesentlichen Ursachen von Blutungskomplikationen darzustellen. Prostazyklin wirkt ausschließlich auf die Thrombozyten selbst, im Gegensatz dazu wurden Aprotinin-Gaben von Inhibitionen der Thrombin-Aktivierung und Fibrinolyse sowie Thrombozyten-protektiven Effekten begleitet. CPB verursacht die Freisetzung von Elastase; diese kann somit als Indikator von Inflammationsreaktionen herangezogen werden. Dies steht in Korrelation zu der beobachteten AT-III-Verminderung; daher erscheinen AT-III-Substitutionen in solchen Fällen sinnvoll.

Summary

Background

Open heart surgery with cardiopulmonary bypass causes changes in hemostasis. Artificial surfaces are bioincompatible and thus may initiate a reaction similar to an acute inflammation. In some patients this “post-perfusion syndrome” (PPS), which includes changes in hemostasis, is the beginning of a SIRS. Thus, it was the aim of our study to investigate the cascade of coagulation and fibrinolysis during and after ECC, especially a modification by prostacyclin and aprotinin.

Methods

In a prospective study 40 patients undergoing aortocoronary bypass grafting were divided into 4 groups of 10 patients, depending on their drug administration with PGI2 and/or aprotinin. Six blood samples were taken from every patient perioperatively and analyzed for parameters of inflammation, coagulation and fibrinolysis.

Results

Significant differences between the 4 groups could be found for platelets, tPA, D-dimers, PAI-, α2-antiplasmin- and plasminogen-activity. Furthermore, there were significantly lower vales for TAT complexes during ECC in the aprotinin group. PF4 and β-TG were significantly decreased during ECC only in patients with PGI2 and aprotinin. Levels of plasma elastase increased significantly in all intra- and postoperative blood samples with a direct correlation to decreasing antithrombin III-levels. In patients with a postoperative PPS or SIRS, intraoperative elastase levels were significantly higher.

Conclusions

During ECC the activation of fibrinolysis seems to be of importance for bleeding complications. Prostacyclin only acts on thrombocytes directly, whereas the application of aprotinin was followed by inhibition of thrombin activation and fibrinolysis and by a protecting effect on thrombocytes. CPB initiates an elastase release, which seems to be an indicator of inflammatory reactions. As elastase release could be correlated to AT III reduction, the use of AT III seems to be useful in selected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Signori EE, Penner JA, Kahn DR (1969) Coagulation defects and bleeding in open-heart surgery. Ann Thorac Surg 8:521

    CAS  PubMed  Google Scholar 

  2. Utley JR (1986) Early development of cardiopulmonary bypass. Perfusion 1:14

    Google Scholar 

  3. Chenoweth DE, Cooper SW, Hugli TE, Stewart RW, Blackstone EH, Kirklin JW (1981) Complement activation during cardiopulmonary bypass. Evidence for generation of C3a and C5a anaphylotoxins. N Engl J Med 304:497–503

    CAS  PubMed  Google Scholar 

  4. Riegel W, Spillner G, Schlosser V, Horl WH (1988) Plasma levels of main granulocyte components during cardiopulmonary bypass. J Thorac Cardiovasc Surg 95:1014–1019

    CAS  PubMed  Google Scholar 

  5. Irvine L, Sundaram S, Courtney JM, Taggart DP, Wheatley DJ, Lowe GDO (1991) Monitoring of factor XII activity and granulcyte elastase release during cardiopulmonary bypass. Trans Am Soc Artif Intern Organs 37:569–571

    CAS  Google Scholar 

  6. Borowiec J, Bagge L, Saldeen T, Thelin S (1997) Biocompatibility reflected by haemostasis variables during cardiopulmonary bypass using heparin-coated circuits. Thorac Cardiovasc Surg 45:163–167

    CAS  PubMed  Google Scholar 

  7. Colman RW (1990) Platelet and neutrophil activation in cardiopulmonary bypass. Ann Thorac Surg 49:32–34

    CAS  PubMed  Google Scholar 

  8. Kirklin JK, Westaby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacitico AD (1983) Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 86:854–857

    Google Scholar 

  9. Plow E (1975) Alternative pathways to fibrinolysis. J Clin Invest 56:30–38

    CAS  PubMed  Google Scholar 

  10. Cohen JR, Tenenbaum N, Sarfati I, Tyras D, Graver LM, Weinstein G, Wise L (1992) In vivo inactivation of antithrombin III is promoted by heparin during cardiopulmonary bypass. J Invest Surg 5:45–49

    CAS  PubMed  Google Scholar 

  11. Feindt P, Volkmer I, Seyfert UT, Haack H (1991) The role of protein C as an inhibitor of blood clotting during extracorporeal circulation. Thorac Cardiovasc Surg 39:338–343

    CAS  PubMed  Google Scholar 

  12. Marx G, Pokar H, Reuter H, Doering V, Tilsner V (1991) The effects of aprotinin on hemostatic function during cardiac surgery. J Cardiothorac Vasc Anesth 5:467–474

    Article  CAS  PubMed  Google Scholar 

  13. Emeis JJ (1992) Regulation of the acute release of tissue-type plasminogen activator from the endothelium by coagulation activation products. Ann NY Acad Sci 667:249–258

    CAS  PubMed  Google Scholar 

  14. van Oeveren W, Jansen NJ, Bidstrup BP (1987) Effects of aprotinin on hemostatic mechanisms during cardiopulmonary bypass. Ann Thorac Surg 44:640–645

    CAS  PubMed  Google Scholar 

  15. Chandler W (1996) The effects of cardiopulmonary bypass on fibrin formation and lysis: is anormal fibrinolytic response essential? J Cardiovasc Pharmacol 27(1):S63–S68

    Article  CAS  PubMed  Google Scholar 

  16. Boeken U, Feindt P, Petzold T, Klein M, Micek M, Seyfert UT, Mohan E, Schulte HD, Gams E (1998) Diagnostic value of procalcitonin: the influence of cardiopulmonary bypass, aprotinin, SIRS and sepsis. Thorac Cardiovasc Surg 46:348–351

    CAS  PubMed  Google Scholar 

  17. American American College of Chest Physicians—Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–875

    PubMed  Google Scholar 

  18. Davis R, Wittington R (1995) Aprotinin. Drugs 49:954–983

    CAS  PubMed  Google Scholar 

  19. Bick RL (1985) Hemostasis defects associated with cardiac surgery, prosthetic devices, and other extracorporeal circuits. Semin Thromb Hemost 11:249–280

    CAS  PubMed  Google Scholar 

  20. Woodman RC, Harker LA (1990) Bleeding complications associated with cardiopulmonary bypass. Blood 76:1680–1697

    CAS  PubMed  Google Scholar 

  21. Royston D (1992) High-dose aprotinin therapy: a review of the first five years’ experience. J Cardiothorac Vasc Anesth 6:76–100

    Article  CAS  PubMed  Google Scholar 

  22. Westaby S (1983) Complement and the damaging effects of cardiopulmonary bypass. Thorax 38:321–325

    CAS  PubMed  Google Scholar 

  23. Furie B, Furie BC (1992) Molecular and cellular biology of blood coagulation. N Engl J Med 326:800–806

    CAS  PubMed  Google Scholar 

  24. Bachmann F, Mc Kenna R, Cole ER (1975) The hemostatic mechanisms after open heart surgery. I. Studies on plasma coagulation factors and fibrinolysis in 512 patients after extracorporeal circulation. J Cardiovasc Surg 70:76–85

    CAS  Google Scholar 

  25. Holloway DS, Summaria L, Sandesara J (1988) Decreased platelet number and function and increased fibrinolysis contribute to postoperative bleeding in cardiopulmonary bypass patients. Thromb Haemost 59:62–67

    CAS  PubMed  Google Scholar 

  26. Kucuk O, Kwaan HC, Frederickson J (1986) Increased fibrinolytic activity in patients undergoing cardiopulmonary bypass operation. Am J Hematol 23:223–229

    CAS  PubMed  Google Scholar 

  27. Stibbe J, Kluft C, Brommer EJP (1984) Enhanced fibrinolytic activity during cardiopulmonary bypass in open-heart surgery in man is caused by extrinsic plasminogen activator. Eur J Clin Invest 14:375–382

    CAS  PubMed  Google Scholar 

  28. Friedenberg WR, Myers WO, Plotka ED (1978) Platelet dysfunction associated with cardiopulmonary bypass. Ann Thorac Surg 25:298–305

    CAS  PubMed  Google Scholar 

  29. Zill P, Fasol R, Groscurth P, Klepetko W, Reichenspurner H, Wolner E (1989) Blood platelets in cardiopulmonary bypass operation. J Thorac Cardiovasc Surg 97:379–388

    CAS  PubMed  Google Scholar 

  30. Cella G, Vittadello O, Galucci V, Girolami A (1981) The release of β-thromboglobulin and platelet factor 4 during extracorporeal circulation for open heart surgery. Europ J Clin Invest 11:165–169

    CAS  PubMed  Google Scholar 

  31. Faymonville ME, Deby-Dupont G, Larbuisson R (1986) Prostaglandin E2, prostacyclin, and thromboxane changes during nonpulsatile cardiopulmonary bypass in humans. J Thorac Cardiovasc Surg 91:858–866

    CAS  PubMed  Google Scholar 

  32. Watkins WD, Peterson MB, Kong DL (1982) Thromboxane and prostacyclin changes during cardiopulmonary bypass with and without pulsatile flow. J Thorac Cardiovasc Surg 84:250–256

    CAS  PubMed  Google Scholar 

  33. Nagaoka H, Innami R, Murayama F, Funakoshi N, Hirooka K, Watanabe M, Satoh M (1991) Effects of aprotinin on prostaglandin metabolism and platelet function in open heart surgery. J Cardiovasc Surg 32:31–37

    CAS  Google Scholar 

  34. Ditter H, Heinrich D, Matthias FR, Sellmann-Richter R, Wanger WL, Hehrlein FW (1983) Effects of prostacyclin during cardiopulmonary bypass in men plasma levels of β thromboglobulin, platelet factor 4, thromboxane B2, 6-keto-prostaglandin F1α and heparin. Thrombosis Research 32:393–408

    Article  CAS  PubMed  Google Scholar 

  35. Aren C, Feddersen K, Radegran K (1983) Effects of prostacyclin infusion on platelet activation and postoperative blood loss in coronary bypass. Ann Thorac Surg 36:49–54

    CAS  PubMed  Google Scholar 

  36. DiSesa VJ, Huval W, Lelcuk S (1984) Disadvantages of prostacyclin infusion during cardiopulmonary bypass: a double-blind study of 50 patients having coronary revascularization. Ann Thorac Surg 38:514–519

    CAS  PubMed  Google Scholar 

  37. Feindt P, Volkmer I, Seyfert U, Huwer H, Kalweit G, Gams E (1993) Activated clotting time, antikoagulation,use of heparin, and thrombin activation during extracorporeal circulation:changes under aprotinin therapy. Thorac Cardiovasc Surgeon 41:9–15

    CAS  Google Scholar 

  38. Ashraf S, Tian Y, Cowan D, Nair U, Chatrath R, Sunders NR (1997) “Low-Dose”-Aprotinin modifies hemostasis but not proinflammatoty cytokine release. Ann Thorac Surg 63:68–73

    CAS  PubMed  Google Scholar 

  39. Butler J, Rocker GM, Westaby S (1993) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 55:552–559

    CAS  PubMed  Google Scholar 

  40. Hennein HA, Ebba H, Rodriguez JR (1994) Relationship of the proinflammatory cytokines to myocardialischemia and dysfunction after uncomplicated coronary revascularization. J Thorac Cardiovasc Surg 108:626–635

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Litmathe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litmathe, J., Boeken, U., Feindt, P. et al. Auswirkungen der extracorporalen Zirkulation (EKZ) auf das Gerinnungssystem und die Fibrinolysekaskade. Z Herz-, Thorax-, Gefäßchir 18, 222–230 (2004). https://doi.org/10.1007/s00398-004-0459-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-004-0459-8

Schlüsselwörter

Key words

Navigation