Skip to main content
Log in

Integral and differential constitutive equations for entangled polymers with simple versions of CCR and force balance on entanglements

  • ORIGINAL CONTRIBUTION
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The theory of Doi and Edwards for entangled polymers has been recently modified for the case of fast flows to account for convective contributions to molecular dynamics. The flow-induced relative motion between neighboring chains removes constraints and speeds up relaxation. Convective constraint release (CCR) may thus explain why the shear stress is seen to approach a plateau at high shear rates instead of decreasing as predicted by the basic theory. In slow flows, as well as in step strain, another discrepancy between theory and observations can be found in the normal stress ratio in shear Ψ=−N2/N1. The theoretical value for Ψ at low deformations is 1/7 whereas measured values for well-entangled systems are systematically larger. We have recently considered the possibility that this discrepancy arises because force balance requirements at the entanglement nodes are ignored in the classical theory. Accordingly, we have proposed a change in the orientational tensor Q. Here, we sum up on these recent findings by proposing single-relaxation-time constitutive equations of the integral or rate type incorporating those concepts in a simple way. Such equations should be suitable for numerical simulation of complex flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 1 January 2000 Accepted: 8 August 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrucci, G., Greco, F. & Ianniruberto, G. Integral and differential constitutive equations for entangled polymers with simple versions of CCR and force balance on entanglements. Rheol. Acta 40, 98–103 (2001). https://doi.org/10.1007/s003970000143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003970000143

Navigation