Skip to main content
Log in

Role of plasticity in the universal scaling of shear-thickening dense suspensions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Increase in viscosity under increasing shear stress, known as shear thickening (ST), is one of the most striking properties of dense particulate suspensions. Under appropriate conditions, they exhibit discontinuous shear thickening (DST), where the viscosity increases dramatically and can also transform into a solid-like state due to shear-induced jamming (SJ). The microscopic mechanism giving rise to such interesting phenomena is still a topic of intense research. A phenomenological model proposed by Wyart and Cates shows that the proliferation of stress-activated interparticle frictional contacts can give rise to such striking flow properties. Building on this model, recent work proposes and verifies a universal scaling relation for ST systems where two different power-law regimes with a well-defined crossover point are obtained. Nonetheless, the difference in the nature of the flow in these two scaling regimes remains unexplored. Here, using rheology in conjugation with high-speed optical imaging, we study the flow and local deformations in various ST systems. We observe that with increasing applied stress, the smooth flow changes into a spatio-temporally varying flow across the scaling crossover. We show that such fluctuating flow is associated with intermittent dilatancy, shear-band plasticity, and fracture induced by system-spanning frictional contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data for this manuscript can be obtained from the corresponding author under reasonable request.

References

Download references

Acknowledgements

S.M. thanks SERB (under DST, Govt. of India) for a Ramanujan Fellowship. We acknowledge Ivo Peters for developing the MATLAB codes used for PIV analysis, K.M. Yatheendran for helping with the SEM imaging. We thank A.K. Sood and Bulbul Chakraborty for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayantan Majumdar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 616 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, S., Mohanan, A. & Majumdar, S. Role of plasticity in the universal scaling of shear-thickening dense suspensions. Rheol Acta 63, 291–300 (2024). https://doi.org/10.1007/s00397-024-01443-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-024-01443-1

Keywords

Navigation