Skip to main content
Log in

Rheology and dissolution capacity of cellulose in novel [mTBNH][OAc] ionic liquid mixed with green co-solvents

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Dissolution of cellulose is crucial for its regeneration and chemical modification, such as homogeneous transesterification, for example. The cellulose dissolution in ionic liquid (IL) media is suggested as a prospective environmentally friendly alternative to conventional solvents. In this study, novel distillable ionic liquid 5-methyl-1,5,7-triaza-bicyclo-[4.3.0]non-6-enium acetate, [mTBNH][OAc] was used for cellulose dissolution. This IL has high dissolving power towards cellulose and durability for recycling. However, the disadvantage of ILs is their high viscosity, which limits the supreme cellulose concentration in IL solutions, and their high cost, hindering their commercialization. The addition of low-viscous, low-cost, and naturally derived co-solvents can reduce the overall viscosity and cost. In this study, rheology experiments were conducted to investigate the flow behavior of cellulose in [mTBNH][OAc] ionic liquid mixed with the green co-solvents such as γ-Valerolactone (GVL), dimethyl isosorbide (DMI), and N,N′-dimethylpropyleneurea (DMPU). A study of the rheology showed that the viscosity reduces at low doses of co-solvent (≤ 50 wt%) but causes the structuring of the cellulose solution and its gelation (or phase separation) at high doses (≥ 50 wt%). The rheological study also indicated that the flow activation energy of cellulose in IL/co-solvent systems is lower than that in pure IL and decays in the order of DMPU > DMI > GVL > DMSO.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data are available within the article.

References

  • Andanson J-M, Bordes E et al (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16(5):2528–2538

    Article  CAS  Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier

    Google Scholar 

  • Bistany KL, Kokini JL (1983) Dynamic viscoelastic properties of foods in texture control. J Rheol 27(6):605–620

    Article  Google Scholar 

  • Brandrup J, Immergut EH et al (2005) Polymer handbook, 4th edn. John Wiley & Sons

    Google Scholar 

  • Budtova T, Navard P (2015) Viscosity-temperature dependence and activation energy of cellulose solutions. Nord Pulp Pap Res J 30(1):99–104

  • Byrne FP, Jin S et al (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4(1):7

    Article  Google Scholar 

  • Cao X, Sun S et al (2013) Rapid synthesis of cellulose esters by transesterification of cellulose with vinyl esters under the catalysis of NaOH or KOH in DMSO. J Agric Food Chem 61(10):2489–2495

    Article  CAS  Google Scholar 

  • Chen X, Zhang Y et al (2009) Rheology of concentrated cellulose solutions in 1-butyl-3-methylimidazolium chloride. J Polym Environ 17(4):273–279

    Article  CAS  Google Scholar 

  • Chen X, Zhang Y et al (2011) Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. J Rheol 55(3):485–494

    Article  CAS  Google Scholar 

  • Cravotto G, Gaudino EC et al (2008) Preparation of second generation ionic liquids by efficient solvent-free alkylation of N-heterocycles with chloroalkanes. Molecules 13:149–156

    Article  CAS  Google Scholar 

  • Dalla Torre D, Annatelli M et al (2023) Acid catalyzed synthesis of dimethyl isosorbide via dimethyl carbonate chemistry. Catal Today 423:113892

    Article  CAS  Google Scholar 

  • Elsayed S, Hellsten S et al (2020) Recycling of superbase-based ionic liquid solvents for the production of textile-grade regenerated cellulose fibers in the lyocell process. ACS Sustain Chem Eng 8(37):14217–14227

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P et al (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524

    Article  CAS  Google Scholar 

  • Flieger J, Flieger M (2020) Ionic liquids toxicity-benefits and threats. Int J Mol Sci 21(17):6267

    Article  CAS  Google Scholar 

  • Gandhi KS, Williams MC (1972) Effect of solvent character on polymer entanglements. J Appl Polym Sci 16(10):2721–2725

    Article  CAS  Google Scholar 

  • Gericke M, Schlufter K et al (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10(5):1188–1194

    Article  CAS  Google Scholar 

  • Gleissle W, Hochstein B (2003) Validity of the Cox-Merz rule for concentrated suspensions. J Rheol 47(4):897–910

    Article  CAS  Google Scholar 

  • Han S, Li J et al (2009) Potential applications of ionic liquids in wood related industries. Bioresources 4(2):825–834

    Article  CAS  Google Scholar 

  • Hawkins JE, Liang Y et al (2021) Time temperature superposition of the dissolution of cellulose fibres by the ionic liquid 1-ethyl-3-methylimidazolium acetate with cosolvent dimethyl sulfoxide. Carbohydrate Polym Technol Appl 2:100021

    CAS  Google Scholar 

  • Heinze T, Dicke R et al (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201(6):627–631

    Article  CAS  Google Scholar 

  • Horváth IT (2008) Solvents from nature. Green Chem 10(10):1024–1028

    Article  Google Scholar 

  • Ilyin SO, Kostyuk AV et al (2023) The effect of non-solvent nature on the rheological properties of cellulose solution in diluted ionic liquid and performance of nanofiltration membranes. Int J Mol Sci 24(9):8057

    Article  CAS  Google Scholar 

  • Ilyin SO, Makarova VV et al (2020) Phase behavior and rheology of miscible and immiscible blends of linear and hyperbranched siloxane macromolecules. Mater Today Commun 22:100833

    Article  CAS  Google Scholar 

  • Isik M, Sardon H et al (2014) Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci 15(7):11922–11940

    Article  CAS  Google Scholar 

  • King AWT, Asikkala J et al (2011) Distillable acid–base conjugate ionic liquids for cellulose dissolution and processing. Angewandte Chem Int Edition 50(28):6301–6305

    Article  CAS  Google Scholar 

  • Köhler S, Liebert T et al (2007) Interactions of ionic liquids with polysaccharides 1. Unexpected Acetylation of Cellulose with 1-Ethyl-3-ethylimidazolium Acetate. Macromol Rapid Commun 28:2311–2317

    Article  Google Scholar 

  • Kostag M, Gericke M et al (2019) Twenty-five years of cellulose chemistry: innovations in the dissolution of the biopolymer and its transformation into esters and ethers. Cellulose 26(1):139–184

    Article  CAS  Google Scholar 

  • Kuang Q-L, Zhao J-C et al (2008) Celluloses in an ionic liquid: the rheological properties of the solutions spanning the dilute and semidilute regimes. J Phys Chem B 112(33):10234–10240

    Article  CAS  Google Scholar 

  • Lefroy KS, Murray BS et al (2021) Rheological and NMR studies of cellulose dissolution in the ionic liquid BmimAc. J Phys Chem B 125(29):8205–8218

    Article  CAS  Google Scholar 

  • Liebert T (2010) Cellulose solvents – remarkable history, bright future. Cellulose Solvents: For Analysis, Shaping and Chemical Modification. American Chemical Society, Washington, DC, ACS Symposium Series;

    Book  Google Scholar 

  • Lindman B, Karlström G et al (2010) On the mechanism of dissolution of cellulose. J Mol Liquids 156:76–81

    Article  CAS  Google Scholar 

  • Lu F, Cheng B et al (2012) Rheological characterization of concentrated cellulose solutions in 1-Allyl-3-methylimidazolium chloride. J Appl Polym Sci 124:3419–3425

    Article  CAS  Google Scholar 

  • Lv Y, Wu J et al (2012) Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions. Polymer 53(12):2524–2531

    Article  CAS  Google Scholar 

  • Mäki-Arvela P, Anugwom I et al (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32(3):175–201

    Article  Google Scholar 

  • Malkin AY (1994) Rheology fundamentals. ChemTech Publishing, Ontario

    Google Scholar 

  • Marrucci G (1996) Dynamics of entanglements: a nonlinear model consistent with the Cox-Merz rule. J Nonnewton Fluid Mech 62(2-3):279–289

    Article  CAS  Google Scholar 

  • Martins MAR, Sosa FHB et al (2022) Physico-chemical characterization of aqueous solutions of superbase ionic liquids with cellulose dissolution capability. Fluid Phase Equilibria 556:113414

    Article  CAS  Google Scholar 

  • McCormick CL, Dawsey TR (1990) Preparation of cellulose derivatives via ring-opening reactions with cyclic reagents in lithium chloride/N, N-dimethylacetamide. Macromolecules 23(15):3606–3610

    Article  CAS  Google Scholar 

  • McCormick CL, Lichatowich DK (1979) Homogeneous solution reactions of cellulose, chitin, and other polysaccharides to produce controlled-activity pesticide systems. J Polym Sci: Polym Lett Edition 17(8):479–484

    CAS  Google Scholar 

  • Minnick DL, Flores RA et al (2016) Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects. J Phys Chem B 120(32):7906–7919

    Article  CAS  Google Scholar 

  • Minnick DL, Flores RA et al (2017) Viscosity and rheology of ionic liquid mixtures containing cellulose and cosolvents for advanced processing. Ionic Liquids: Curr State Future Directions Am Chem Soc 1250:189–208

    CAS  Google Scholar 

  • Ostonen A, Bervas J et al (2016) Experimental and theoretical thermodynamic study of distillable ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate. Ind Eng Chem Res 55(39):10445–10454

    Article  CAS  Google Scholar 

  • Owens CE, Du J et al (2022) Understanding the dynamics of cellulose dissolved in an ionic liquid solvent under shear and extensional flows. Biomacromolecules 23(5):1958–1969

    Article  CAS  Google Scholar 

  • Parviainen A, Wahlström R et al (2015) Sustainability of cellulose dissolution and regeneration in 1,5-diazabicyclo[4.3.0]non-5-enium acetate: a batch simulation of the IONCELL-F process. RSC Adv 5(85):69728–69737

    Article  CAS  Google Scholar 

  • Porfirio T, Galindo-Rosales FJ et al (2021) Rheological characterization of polymeric solutions used in spray drying process. Eur J Pharm Sci 158:105650

    Article  CAS  Google Scholar 

  • Qiu X, Hu S (2013) Smart materials based on cellulose: a review of the preparations, properties, and applications. Materials (Basel) 6(3):738–781

    Article  Google Scholar 

  • Quintana S, Machacon D, Marsiglia RM, Torregroza E, Garcia-Zapateiro L (2018) Steady and shear dynamic rheological properties of squash (Cucurbita moschata) pulp. Contemp Eng Sci 11(21):1013–1024

    Article  CAS  Google Scholar 

  • Saalwächter K, Burchard W et al (2000) Cellulose solutions in water containing metal complexes †. Macromolecules 33:4094–4107

    Article  Google Scholar 

  • Sammons RJ, Collier JR et al (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. Shear rheology. J Appl Polym Sci 110(2):1175–1181

    Article  CAS  Google Scholar 

  • Seddon KR, Stark A et al (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72(12):2275–2287

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellluose with ionic liquids. J Am Chem Soc 124(18):4974–4975

    Article  CAS  Google Scholar 

  • Tager AA (1974) Effect of solvent quality on the viscosity of flexible-chain and rigid-chain polymers in a wide range of concentrations. Rheol Acta 13(2):323–332

    Article  CAS  Google Scholar 

  • Tarasova E, Savale N et al (2023) Preparation of thermoplastic cellulose esters in [mTBNH][OAC] ionic liquid by transesterification reaction. Polymers 15(19):3979

    Article  CAS  Google Scholar 

  • Walden PT (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci St. Petersburg 1800:405–422

  • Wang L, Gao L et al (2014) Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide. Carbohydrate Polym 110:292–297

    Article  CAS  Google Scholar 

  • Wittmar ASM, Koch D et al (2020) Factors affecting the nonsolvent-induced phase separation of cellulose from ionic liquid-based solutions. ACS Omega 5(42):27314–27322

    Article  CAS  Google Scholar 

  • Xia J, King AWT et al (2021) Phase-separation of cellulose from ionic liquid upon cooling: preparation of microsized particles. Cellulose 28(17):10921–10938

    Article  CAS  Google Scholar 

  • Xu A, Zhang Y et al (2013) Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydrate Polym 92(1):540–544

    Article  CAS  Google Scholar 

  • Xu C, Cheng Z (2021) Thermal stability of ionic liquids: current status and prospects for future development. Processes 9(2):337

    Article  CAS  Google Scholar 

  • Yuan C, Shi W et al (2019) Dissolution and transesterification of cellulose in γ-valerolactone promoted by ionic liquids. N J Chem 43(1):330–337

    Article  CAS  Google Scholar 

  • Zhang S, Sun N et al (2006) Physical properties of ionic liquids: database and evaluation. J Phys Chem Reference Data 35(4):1475–1517

    Article  CAS  Google Scholar 

  • Zhao Y, Liu X et al (2013) Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems. J Phys Chem B 117(30):9042–9049

    Article  CAS  Google Scholar 

  • Zheng B, Harris C et al (2019) Dissolution capacity and rheology of cellulose in ionic liquids composed of imidazolium cation and phosphate anions. Polym Adv Technol 30(7):1751–1758

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Estonian Research Council via project RESTA10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Tarasova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasova, E., Savale, N., Ausmaa, PM. et al. Rheology and dissolution capacity of cellulose in novel [mTBNH][OAc] ionic liquid mixed with green co-solvents. Rheol Acta 63, 167–178 (2024). https://doi.org/10.1007/s00397-024-01433-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-024-01433-3

Keywords

Navigation