Skip to main content
Log in

Viscosity of aqueous suspensions of titanium dioxide (anatase) nano-particles

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The viscosity of aqueous suspensions of 25 nm titanium dioxide nano-particles was studied as a function of shear rate, temperature, and particle concentration. It is suggested that the complex behaviour of the material could be explained by the interplay of three factors, each having activation energy and activation entropy components. These are the intrinsic viscosity which was shown to obey a semi-empirical form of DLVO equation plus two shear rate–dependent mechanisms, one (thinning) changing the structure from an ordered to a disordered state, the other (thickening) an activation action term due to energy dissipated in particle collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References 

  • Atkins PW (1998) Physical Chemistry, 6th edn. Oxford University Press, Oxford, UK

    Google Scholar 

  • Bergstrom L (1998) Shear thinning and shear thickening of concentrated ceramic suspensions. Colloids Surf A 133:151–155

    Article  CAS  Google Scholar 

  • Chadwick MD, Goodwin JW, Vincent B, Lawson EJ, Mills PDA (2002) Rheological behaviour of titanium dioxide (uncoated anatase) in ethylene glycol. Colloids Surf A 196(235):245

    Google Scholar 

  • Chandler HD (2013) Activation energy and entropy for viscosity of wormlike micelle solutions. J Colloid Interface Sci 409:98–103

    Article  CAS  Google Scholar 

  • Chandler HD (2017) Activation entropy and anomalous temperature dependence of viscosity in aqueous suspensions of Fe2O3. Powder Technol 305:572–577

    Article  CAS  Google Scholar 

  • Chandler HD (2019) A Physical Basis for Non-Newtonian Power Law Viscosity: Soft Mater 17:137–142

    CAS  Google Scholar 

  • Cottrell AH, The mechanical properties of matter, J.Wiley, London, UK, 1964.

  • Duangthonusk WS, Wongwies S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exptl Thermal and Fluid Sci 33:706–714

    Article  Google Scholar 

  • Fedele L, Colla L, Bobbo S (2012) Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium dioxide nanoparticles. Int J Refrig 35:1359–1366

    Article  CAS  Google Scholar 

  • Frost HJ, Ashby M.F Deformation-mechanism maps, Pergamon Press, Oxford, UK, 1982.

  • Garoosi F (2020) Presenting two new empirical models for calculating the effective dynamic viscosity and thermal conductivity of nanofluids. Powder Technol 366:788–820

    Article  CAS  Google Scholar 

  • Gomez –Merino AI, Arjona-Escudero JL, Santos-Raez IM, Rubio-Hernandez FJ, (2019) Microstructure and thermodynamic properties of aqueous alumina nanofluids. Powder Technol 353:509–515

    Article  Google Scholar 

  • Gomez –Merino AI, Rubio-Hernandez FJ, Velazquez –Navarro JF, Aguiar J, Jimenez –Agredano C, (2014) Study of the aggregation state of anatase water nanofluids using rheological and DLS methods. Ceram Int 40:14045–14050

    Article  Google Scholar 

  • Hanamann T (2008) Influence of particle properties on the viscosity of polymer-alumina composites. Ceram Int 34:2099–2015

    Article  Google Scholar 

  • He Y, Jin Y, Chen H, Ding Y, Cang D, Liu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat and Mass Transfer 50:2272–2281

    Article  CAS  Google Scholar 

  • Hoffman RL (1974) Discontinuous and dilatant viscosity behaviour in concentrated suspensions, II. Theory and experimental tests. J Colloid Interface Sci 46:491–506

    Article  CAS  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in a suspension of rigid spheres. Trans Soc Rheol 3:137–152

    Article  CAS  Google Scholar 

  • Mikulasek P, Wakeman RJ, Marchant JQ (1997) The influence of pH and temperature on the rheology and stability of aqueous titanium dioxide dispersions. Chem Eng J 67:97–102

    Article  CAS  Google Scholar 

  • Morris GE, Skinner WA, Self PG, Smart RStC, (1999) Surface chemistry and rheological behaviour of titania pigment suspensions. Colloids Surf A 155:27–41

    Article  CAS  Google Scholar 

  • Ree RFH, T, Eyring H, (1958) Relaxation theory of transport problems in condensed systems. Ind Eng Chem 50:1036–1040

    Article  CAS  Google Scholar 

  • Silambarasan M, Manikandan S, Rajan KS (2012) Viscosity and thermal conductivity of sub-micron TiO2 particles in water prepared by stirred bead milling and ultrasonication. Int J Heat and Mass Transfer 55:7991–8002

    Article  CAS  Google Scholar 

  • Taylor ML, Morris GE, Smart RStC (2003) Influence of aluminium doping on titania pigment structural and dispersion properties. J Colloid Interface Sci 262:81–88

    Article  CAS  Google Scholar 

  • Tseng WJ, Lin K-C (2003) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater Sci Eng A 355:186–192

    Article  Google Scholar 

  • Turian RM, Ma TW, Hsu FLG, Sung DJ (1997) Characterization, settling, and rheology of concentrated fine particulate mineral slurries. Powder Technol 93:219–233

    Article  CAS  Google Scholar 

  • Yang H-G, Li C-Z, Gu H-C, Fang T-N Rheological behaviour of titanium dioxide suspensions (2001) J. Colloid Interface Sci 236:96–103.

  • Zhou Z, Scales PJ, Boger DV (2001) Chemical and physical control of the rheology of concentrated metal oxide suspensions. Chem Eng Sci 56:2901–2920

    Article  CAS  Google Scholar 

  • Zupancic A, Lapasin R, Zumer M (1997) Rheological characterisation of shear thickening TiO2 suspensions in low molecular polymer solutions. Prog Organic Coatings 30:67–78

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Chandler.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandler, H.D. Viscosity of aqueous suspensions of titanium dioxide (anatase) nano-particles. Rheol Acta 61, 473–481 (2022). https://doi.org/10.1007/s00397-022-01348-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-022-01348-x

Keywords 

Navigation