Skip to main content
Log in

Effects of graphene oxide on microstructure and mechanical properties of isotropic polydimethylsiloxane-based magnetorheological elastomers

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Isotropic magnetorheological elastomers (MREs) with carbonyl iron particles (CIPs) dispersed in graphene oxide (GO)–filled polydimethylsiloxane (PDMS) matrix were fabricated by using the solution blending-casting method. The effects of GO content on the microstructure, vulcanization, quasi-static compression, and dynamic magnetorheological (MR) effect were experimentally investigated. The results reveal that the addition of GO sheets hinders the chemical cross-linking of PDMS matrix and induces the loose interphase layers between GO sheets and the PDMS matrix. The changing of mechanical properties according to GO loading is controlled by two competing factors: the inhibited chemical cross-linking of PDMS chains and the reinforcing effect of GO sheets. Under the quasistatic compressive load, the former is the dominant factor and causes the decrease of the compressive modulus. Under the dynamic shear deformation, the latter is the dominant factor and leads to the increment of the dynamic shear modulus. The increase in the GO content can lead to the increase of the weak GO/PDMS interfaces and particle aggregations, which in turn cause the improved Payne effect and loss modulus. The MR effect of the MREs under the magnetic field is improved by GO loading due to the enhanced mobility of CIPs in the GO-filled PDMS matrix.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abramchuk S, Kramarenko E, Stepanov G, Nikitin LV, Filipcsei G, Khokhlov AR, Zrínyi M (2007) Novel highly elastic magnetic materials for dampers and seals: part I. Preparation and characterization of the elastic materials. Polym Adv Technol 18:883–890

    Article  CAS  Google Scholar 

  • Bastola AK, Hossain M (2020) A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos Part B 200:108348

    Article  CAS  Google Scholar 

  • Berasategi J, Salazar D, Gomez A, Gutierrez J, Sebastián MS, Bou-Ali M, Barandiaran JS (2020) Anisotropic behaviour analysis of silicone/carbonyl iron particles magnetorheological elastomers. Rheol Acta 59:469–476

    Article  CAS  Google Scholar 

  • Bertran A, Sandoval S, Oró-Solé J, Sánchez À, Tobias G (2020) Particle size determination from magnetization curves in reduced graphene oxide decorated with monodispersed superparamagnetic iron oxide nanoparticles. J Colloid Interf Sci 566:107–119

    Article  CAS  Google Scholar 

  • Bokobza L, Erman B (2000) A theoretical and experimental study of filler effect on stress deformation segmental orientation relations for poly(dimethylsiloxane) networks. Macromolecules 33:8858–8864

    Article  CAS  Google Scholar 

  • Borin D, Kolsch N, Stepanov G, Odenbach S (2018) On the oscillating shear rheometry of magnetorheological elastomers. Rheol Acta 57:217–227

    Article  CAS  Google Scholar 

  • Cao L, Wang Y, Dong P, Vinod S, Tijerina JT, Ajayan PM, Xu Z, Lou J (2016) Interphase induced dynamic self-stiffening in graphene-based polydimethylsiloxane nanocomposites. Small 12:3723–3731

    Article  CAS  Google Scholar 

  • Chen L, Gong XL, Li WH (2008) Effect of carbon black on the mechanical performances of magnetorheological elastomers. Polym Test 27:340–345

    Article  CAS  Google Scholar 

  • Cvek M, Mrlík M, Ilčíková M, Mosnáček J, Münster L (2017) Synthesis of silicone elastomers containing silyl-based polymer-grafted carbonyl iron particles: an efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules 50:2189–2200

    Article  CAS  Google Scholar 

  • Dai G, Mishnaevsky L (2014) Graphene reinforced nanocomposites: 3D simulation of damage and fracture. Comp Mater Sci 95:684–692

    Article  CAS  Google Scholar 

  • Davis LC (1999) Model of magnetorheological elastomer. J Appl Phys 85:3348

    Article  CAS  Google Scholar 

  • Denver H, Heiman T, Martin E, Gupta A, Tasciuc D (2009) Fabrication of polydimethylsiloxane composites with nickel nanoparticle and nanowire fillers and study of their mechanical and magnetic properties. J Appl Phys 106: 064909.

  • Du L, Namvari M, Stadler FJ (2018) Large amplitude oscillatory shear behavior of graphene derivative/polydimethylsiloxane nanocomposites. Rheol Acta 57:429–443

    Article  CAS  Google Scholar 

  • Fan L, Wang G, Wang W, Lu H, Yang F, Rui X (2019) Size effect of carbon black on the structure and mechanical properties of magnetorheological elastomers. J Mater Sci 54:1326–1340

    Article  CAS  Google Scholar 

  • Gao W, Wang X, Xu W (2019) Magneto-mechanical properties of polydimethylsiloxane composites with a binary magnetic filler system. Polym Compos 40:337–345

    Article  CAS  Google Scholar 

  • Guimont A, Beyou E, Martin G, Sonntag P, Cassagnau P (2011) Viscoelasticity of graphite oxide-based suspensions in PDMS. Macromolecules 44:3893–3900

    Article  CAS  Google Scholar 

  • Hegde S et al (2014) A novel approach to investigate effect of magnetic field on dynamic properties of natural rubber based isotropic thick magnetorheological elastomers in shear mode. J Cent S Univ Technol 21:2612–2619

    Google Scholar 

  • Jolly MR, Carlson JD, Beth C, Muñoz BC, Bullions TA (1996) The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J Intel Mat Syst Str 7:613–622

    Article  CAS  Google Scholar 

  • Kallio M, Lindroos T, Aalto S, Järvinen E, Kärnä T, Meinander T (2007) Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer. Smart Mater Struct 16:506–514

    Article  CAS  Google Scholar 

  • Kang SS, Choi K, Nam JD, Choi HJ (2020) Magnetorheological elastomers: fabrication, characteristics, and applications. Materials 13:4597

    Article  CAS  Google Scholar 

  • Khimi SR, Pickering KL (2016) The effect of silane coupling agent on the dynamic mechanical properties of iron sand/ natural rubber magnetorheological elastomers. Compos Part B 90:115–125

    Article  Google Scholar 

  • Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang Y, Liu Z, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Sci 320:507–511

    Article  CAS  Google Scholar 

  • Kimura Y, Kanauchi S, Kawai M, Mitsumata T, Tamesue S, Yamauchi A (2015) Effect of plasticizer on the magnetoelastic behavior for magnetic polyurethane elastomers. Chem Lett 44:177–178

    Article  Google Scholar 

  • Kuwahara N, Okazawa T, Kaneko M (2010) Osmotic pressures of moderately concentrated polydimethylsiloxane solutions. J Polym Sci Pol Phys 23(2):543–553

    Article  Google Scholar 

  • Lee WS, Yeo KS, Andriyana A, Shee YG, Adikan FRM (2016) Effect of cyclic compression and curing agent concentration on the stabilization of mechanical properties of PDMS elastomer. Mater Design 96:470–475

    Article  CAS  Google Scholar 

  • Li R, Sun LZ (2011) Dynamic mechanical behavior of magnetorheological nanocomposites filled with carbon nanotubes. Appl Phys Lett 99:131912.

  • Li R, Sun LZ, Asce M (2014) Dynamic viscoelastic behavior of multiwalled carbon nanotube–reinforced magnetorheological (MR) nanocomposites. J Nanomech Micromech 4:A4013014

    Article  Google Scholar 

  • Li R, Wang D, Yang P, Tang X, Liu J, Li X (2020) Improved magneto-sensitive adhesion property of magnetorheological elastomers modified using graphene nanoplatelets. Ind Eng Chem Res 59:9143–9151

    Article  CAS  Google Scholar 

  • Li WH, Nakano M (2013) Fabrication and characterization of PDMS based magnetorheological elastomers. Smart Mater Struct 22: 055035.

  • Lokander M, Stenberg B (2003) Performance of isotropic magnetorheological rubber materials. Polym Test 22:245–251

    Article  CAS  Google Scholar 

  • Misra A, Kumar P (2013) Periodic architecture for high performance shock absorbing composites. Sci Rep 3:2056

    Article  Google Scholar 

  • Mordina B, Tiwari RK, Setua DK, Sharma A (2014) Magnetorheology of polydimethylsiloxane elastomer/FeCo3 nanocomposite. J Phys Chem C 118:25684–25703

    Article  CAS  Google Scholar 

  • Perales-Martínez IA, Palacios-Pineda LM, Lozano-Sánchez LM, Martínez-Romero O, Puente-Cordova JG, Elías-Zúñiga A (2017) Enhancement of a magnetorheological PDMS elastomer with carbonyl iron particles. Polym Test 57:78–86

    Article  Google Scholar 

  • Poojary UR, Gangadharan KV (2016) Experimental investigation on the effect of magnetic field on strain dependent dynamic stiffness of magnetorheological elastomer. Rheol Acta 55:993–1001

    Article  CAS  Google Scholar 

  • Qiao Y, Zhang J, Zhang M, Liu L, Zhai P (2021) A magnetic field- and frequency-dependent dynamic shear modulus model for isotropic silicone rubber-based magnetorheological elastomers. Compos Sci Technol 204:108637

    Article  CAS  Google Scholar 

  • Rabindranath R, Böse H (2013) On the mobility of iron particles embedded in elastomeric silicone matrix. J Phys Conf Ser 412:012034

    Article  CAS  Google Scholar 

  • Shiga T, Okada A, Kurauchi T (1995) Magnetroviscoelastic behavior of composite gels. J Appl Polym Sci 58(4):787–792

    Article  CAS  Google Scholar 

  • Tian TF, Li WH, Alici G, Du H, Deng YM (2011) Microstructure and magnetorheology of graphite-based MR elastomers. Rheol Acta 50:825–836

    Article  CAS  Google Scholar 

  • Varga Z, Filipcsei G, Zrínyi M (2006) Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 47:227–233

    Article  CAS  Google Scholar 

  • Vatandoost H, Hemmatian M, Sedaghati R, Rakheja S (2020) Dynamic characterization of isotropic and anisotropic magnetorheological elastomers in the oscillatory squeeze mode superimposed on large static pre-strain. Compos Part B 182:107648

    Article  CAS  Google Scholar 

  • Vatandoost H, Norouzi M, Alehashem SMS, Smoukov SK (2017) A novel phenomenological model for dynamic behavior of magnetorheological elastomers in tension–compression mode. Smart Mater Struct 26:065011

    Article  Google Scholar 

  • Wang S, Jiang W, Jiang W, Ye F, Mao Y, Xuan S, Gong X (2014) Multifunctional polymer composite with excellent shear stiffening performance and magnetorheological effect. J Mater Chem C 2:7133–7140

    Article  CAS  Google Scholar 

  • Wang X, Shi Z, Meng F, Zhao Y, Wu Z, Lei Y, Xue L (2020) Interfacial interaction-induced temperature dependent mechanical property of graphene-PDMS nanocomposite. J Mater Sci 55:1553–1561

    Article  CAS  Google Scholar 

  • Wang Y, Gong X, Yang J, Xuan S (2014) Improving the dynamic properties of MRE under cyclic loading by incorporating silicon carbide nanoparticles. Ind Eng Chem Res 53:3065–3072

    Article  CAS  Google Scholar 

  • Weng X, Li B, Zhang Y, Lv X, Gu G (2017) Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J Alloy Compd 695:508–519

    Article  CAS  Google Scholar 

  • Yadav A, Kumar R, Choudhary HK, Sahoo B (2018) Graphene-oxide coating for corrosion protection of iron particles in saline water. Carbon 140:477–487

    Article  CAS  Google Scholar 

  • Yao J, Sun Y, Wang Y, Fu Q, Xiong Z, Liu Y (2018) Magnet-induced aligning magnetorheological elastomer based on ultra-soft matrix. Compos Sci Technol 162:170–179

    Article  CAS  Google Scholar 

  • Yu M, Qi S, Fu J, Zhu M, Chen D (2017) Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Compos Sci Technol 139:36–46

    Article  CAS  Google Scholar 

  • Yuan Z, Lu Z (2014) Numerical analysis of elastic-plastic properties of polymer composite reinforced by wavy and random CNTs. Comp Mater Sci 95:610–619

    Article  CAS  Google Scholar 

  • Zhang WL, Choi HJ (2014) Self-assembly of graphene oxide coated soft magnetic carbonyl iron particles and their magnetorheology. J Appl Phys 115:17B508

    Article  Google Scholar 

  • Zhang X, Peng S, Wen W, Li W (2008) Analysis and fabrication of patterned magnetorheological elastomers. Smart Mater Struct 17:45001

    Article  Google Scholar 

  • Zhang X, Xue X, Yin Q, Jia H, Wang J, Ji Q, Xu Z (2017) Enhanced compatibility and mechanical properties of carboxylated acrylonitrile butadiene rubber/styrene butadiene rubber by using graphene oxide as reinforcing filler. Compos Part B 111:243–250

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu Y, Lin G, Ruoff RS, Hu N, Schaefer DW, Mark JE (2013) What factors control the mechanical properties of poly (dimethylsiloxane) reinforced with nanosheets of 3-aminopropyltriethoxysilane modified graphene oxide. Polymer 54:3605–3611

    Article  CAS  Google Scholar 

  • Zheng J, Lv H, Lin X, Ji G, Li X, Du Y (2014) Enhanced microwave electromagnetic properties of Fe3O4/graphene nanosheet composites. J Alloy Compd 589:174–181

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory (STACPL220201B04), the Fundamental Research Funds for Central Universities of China under Grant Nos. WUT-2019-zy-233 and WUT-2021 III015GX.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangtao Zhang or Xiang Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16.1 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zhang, J., Guo, X. et al. Effects of graphene oxide on microstructure and mechanical properties of isotropic polydimethylsiloxane-based magnetorheological elastomers. Rheol Acta 61, 215–228 (2022). https://doi.org/10.1007/s00397-022-01329-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-022-01329-0

Keywords

Navigation