Skip to main content
Log in

Diffusion, extensibility, flow, and orientation coupling in polymers filled with extensible and flexible fibers

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

When a fiber is subjected to flow and mass transport, it deforms and swells and thus its orientation and length change accordingly. As a starting point, a semi-kinetic equation is proposed to describe the time evolution of the length and orientation of extensible fibers. Then a mesoscopic model, explicitly incorporating the coupling arising among flow, mass transport, and fibers extensibility and orientation in a mixture composed of a solvent and a fiber-reinforced polymer (FRP), is formulated. The derived governing and constitutive equations possess the GENERIC structure and are parameterized by mobility coefficients and the Helmholtz free energy density. The latter takes into account the orientational ordering of the fibers, the fiber-fiber topological interactions, and the flexible nature of the fibers. The unidirectional flow-free mass transport is thoroughly discussed via scaling analysis, numerical solutions, and comparison with sorption data selected from literature. The dynamics of the boundaries is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adib F, Neogi P (1987) Sorption with oscillation in solid polymers. AICHE J 33:164–166

    CAS  Google Scholar 

  • Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31:751–784

    CAS  Google Scholar 

  • Alfrey T, Gurnee EF, Lloyd WG (1966) Diffusion in glassy polymers. J Polym Sci Part C 12:249–261

    Google Scholar 

  • Beris AN, Edwards BJ (1994) Thermodynamics of flowing system with internal microstructure. Oxford University Press, New York

    Google Scholar 

  • Bird RB, DeAguir JR (1983) An encapsulated dumbbell model for concentrated polymer solutions and melts I. theoretical development and constitutive equation. J Non-Newtonian Fluid Mech 13:149

    CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987a) Dynamics of polymeric liquids, vol 1, 2nd edn. John Wiley, New York

    Google Scholar 

  • Bird RB, Hassager O, Armstrong RC, Curtiss CF (1987b) Dynamics of polymeric liquids, vol 2, 2nd edn. John Wiley, New York

    Google Scholar 

  • Bond DA (2005) Moisture in a fiber-reinforced composite: part I-non-Fickian transport and the effect of fiber spatial distribution, J. Compos Mater 39(23):2113–2141

    CAS  Google Scholar 

  • Carbonell RG, Sarti GC (1990) Coupled deformation and mass-transport processes in solid polymers. Ind Eng Chem Res 29:194–1204

    Google Scholar 

  • Cubaud JC, Hamelin P (1980) Composite materials in civil engineering. Appl Chem Eng Tech Mater:363–368

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford

    Google Scholar 

  • Durning CJ, Tabor M (1986) Modeling weakly non-linear two-stage sorption kinetics in glassy polymer films. Macromolecules 19:2220–2232

    CAS  Google Scholar 

  • El Afif A (2008) Flow-diffusion-interface interaction in blends of immiscible polymers, Rheol. Acta 47:807–820

    Google Scholar 

  • El Afif A (2014) Mesoscopic modeling of viscoelastic diffusion and flow into immiscible polymeric blends. Rheol Acta 53:549–558

    Google Scholar 

  • El Afif A (2015) Flow and non-Fickian mass transport in immiscible blends of two rheologicalydifferent polymers, Rheol. Acta 54:929–940

    Google Scholar 

  • El Afif A, El Omari M (2009) Flow and mass transport in blends of immiscible viscoelastic polymers. Rheol Acta 48:285–299

    Google Scholar 

  • El Afif A, Grmela M (2002) Non-Fickian mass transport in polymers. J Rheol 46:591–628

    Google Scholar 

  • El Afif A, Grmela M, Lebon G (1999) Rheology and diffusion in simple and complex fluids. J Non-Newton Fluid Mech 86:253–275

    Google Scholar 

  • El Afif A, Cortez R, Gaver DP, De Kee D (2003a) Modeling of mass transport into immiscible polymeric blends. J Chem Phys 118:10227–10243

    Google Scholar 

  • El Afif A, Cortez R, Gaver DP, De Kee D (2003b) Modeling of mass transport into immiscible polymeric blends. Macromolecules 36:9216–9229

    Google Scholar 

  • El Aissaoui A, El Afif A (2017) Non-Fickian mass transfer in swelling polymeric non-porous membranes. J Membr Sci 543:172–183

    Google Scholar 

  • Fan X, Phan-Thien N, Zheng R (1998) A direct simulation of fiber suspensions. J Non-Newtonian Fluid Mech 74:113–135

    CAS  Google Scholar 

  • Ferec J, Heniche MC, Ausias G, Carreau PJ (2008) Numerical solution of the Fokker-Planck equation for fiber suspensions: application to the Folgar-Tucker-Lipscomb model. J Non-Newtonian Fluid Mech 155:20–29

    CAS  Google Scholar 

  • Flory P (1953) Principle of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Folgar F, Tucker CL (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3:98–119

    CAS  Google Scholar 

  • Grmela M (1984a) Particle and bracket formulation of kinetic equations. Contemp Math 28:125–132

    Google Scholar 

  • Grmela M (1984b) Bracket formulation of dissipative fluid mechanics equations. Phys Lett A 102A(81):355–358

    Google Scholar 

  • Grmela M (1985) Non-equilibrium extension of Simha-Somcynsky equilibrium theory of polymeric fluids. J Rheol 30:707

    Google Scholar 

  • Grmela M, Ait Kadi A (1994) Rheology of inhomogeneous immiscible blends. J Non-Newtonian Fluid Mech 55:191–199

    CAS  Google Scholar 

  • Grmela M, Carreau PJ (1986) Conformation tensor rheological models. J Non-Newtonian Fluid Mech 23:271

    Google Scholar 

  • Grmela M, Ottinger HC (1997) Dynamics and thermodynamics of complex fluids: general formulation. Phys Rev E 56:6620–6633

    CAS  Google Scholar 

  • Hairch Y, El Afif A (2020) Mesoscopic modeling of mass transport in viscoelastic phase-separated polymeric membranes embedding complex deformable interfaces. J Membr Sci 596:117589

    CAS  Google Scholar 

  • Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing and application: an overview. J Compos Mater 40:61–266

    Google Scholar 

  • Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc Royal Soc London A 102:161–179

    Google Scholar 

  • Joung CG, Phan-Thien N, Fan XJ (2001) Melt rheology of filled thermoplastics. Rev Chem Eng 4:205

    Google Scholar 

  • Karbhari VM, Chin J, Hunston D, Benmokrane B, Juska T, Morgan R, Reynaud AD (2003) Durability gap analysis for fiber-reinforced polymer composites in civil infrastructure. J Compos Constr 7:238–247

    CAS  Google Scholar 

  • Khokhlov AR, Semenov AN (1985) On the theory of liquid-crystalline ordering of polymeric chains with limited flexibility. J Stat Phys 38:161–182

    Google Scholar 

  • Maier W, Saupe A (1960) Z Naturforschung 15a: 287

  • Minelli M and Sarti GC (2018) Gas transport in glassy polymers: prediction of diffusional time lag, Membrane 8:8

  • Neogi P (1983) Anomalous diffusion of vapors through solid polymers, Part II: Anomalous Sorption, AIChE 29 :833–839

  • Ottinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids. Phys Rev E 56:6620–6633

    Google Scholar 

  • Rajabian M, Dubois C, Grmela M (2005) Suspensions of semi-flexible fibers in polymeric fluids: rheology and thermodynamics. Rheol Acta 44:521–535

    CAS  Google Scholar 

  • Sanopoulou M, Stamatialis DF, Petropoulos JH (2002) Investigation of case II diffusion behavior. 2. Study of the poly(methylmethacrylate)-methyl alcohol system by two-beam microinterferometry. Macromolecules 35:1021–1027

    Google Scholar 

  • Schmid CF, Switez L, Klingenberg D (2000) Simulation of fiber flocculation: effects of fiber properties and inter-fiber friction. J Rheol 44:781–809

    CAS  Google Scholar 

  • Thomas N, Windle AH (1978) Transport of methanol in poly(methyl methacrylate). Polymer 19:255–265

    CAS  Google Scholar 

  • Vrentas JS, Duda JL (1977) Diffusion in polymer-solvent systems. III Construction of Deborah number diagrams. J Polym Sci Polym Phys 15:441–453

    CAS  Google Scholar 

  • Wu LC, Peppas AN (1993) Modeling of penetrant diffusion in glassy polymer with an integral sorption Deborah number. J Polym Sci Polym Phys 31:1503–1518

    CAS  Google Scholar 

Download references

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Ali EL AFIF derived the model equations, wrote the paper and supervised the work, and Said Bentis solved numerically the one-dimensional equations and compared the predictions of the model with experimental data taken from literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali El Afif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Fiber length-orientation distribution function

Let ψ(p)dp designates the square of the length of a fiber whose unit vector p is in the solid angle dp. Under the transformation, the length increases by a factor (L ′ /L)2, hence

$$ \psi^{\prime}\left(\boldsymbol{p}^{\prime}\right)d\boldsymbol{p}^{\prime }=\psi \left(\boldsymbol{p}\right)\boldsymbol{dp}{\left(\frac{L\prime }{L}\right)}^{\mathbf{2}} $$
(85)

The ratio (L ′ /L) is given by Eq. (13). The ratio (dp ’ /dp) can be obtained from the transformation rule of the vector p. To this end, we consider a cone with a height k and base area k2dp in the p space, and study how it is transformed when each of its points are transformed according to

$$ \boldsymbol{p}\to \boldsymbol{p}'=\boldsymbol{E}.\boldsymbol{p} $$
(86)

The volume of the cone is

$$ V=\frac{1}{3}{k}^3d\boldsymbol{p} $$
(87)

which it is transformed to

$$ V^{\prime }=\frac{1}{3}k{\prime}^3d\boldsymbol{p}^{\prime }=V\ \mathit{\det}\ \boldsymbol{E} $$
(88)

Now

$$ \frac{k'}{k}=\left|\boldsymbol{E}.\boldsymbol{p}\right|=\frac{1}{\left|{\boldsymbol{E}}^{-\mathbf{1}}.\boldsymbol{p}^{\prime}\right|} $$
(89)

From Eqs. (87) – (89), we have

$$ \frac{d\boldsymbol{p}^{\prime }}{d\boldsymbol{p}}=\frac{1}{\mathit{\det}\ \boldsymbol{E}}\frac{1}{{\left|{\boldsymbol{E}}^{-\mathbf{1}}.\boldsymbol{p}\prime \right|}^3} $$
(90)

Eq.(16) follows from Eqs.(85) and (90).

$$ \psi^{\prime}\left(\boldsymbol{p}^{\prime}\right)=\psi \left(\boldsymbol{p}\right)\frac{1}{\mathit{\det}\ \boldsymbol{E}}\frac{1}{{\left|{\boldsymbol{E}}^{-\mathbf{1}}.\boldsymbol{p}\prime \right|}^5} $$
(91)

In the case of inextensible fibers, det E = 1 and L ′  = L. Thus, one easily recovers the classical distribution function for the fiber’s orientation

$$ \psi^{\prime}\left(\boldsymbol{p}^{\prime}\right)=\psi \left(\boldsymbol{p}\right)\frac{1}{{\left|{\boldsymbol{E}}^{-\mathbf{1}}.\boldsymbol{p}\prime \right|}^3} $$
(92)

Appendix B

The time derivative of a regular real valued functional F = F(ρ, c, u, J a) is

$$ \frac{dF}{dt}=\int dr.\left(\left(\frac{\delta F}{\delta \rho}\right)\left(\frac{\partial \rho }{\partial t}\right)+\left(\frac{\delta F}{\delta c}\right)\left(\frac{\partial c}{\partial t}\right)+\left(\frac{\delta F}{\delta {u}_{\alpha }}\right)\left(\frac{\partial {u}_{\alpha }}{\partial t}\right)+\left(\frac{\delta F}{\delta {J}_{\alpha }}\right)\left(\frac{\partial {J}_{\alpha }}{\partial t}\right)+\left(\frac{\delta F}{\delta {a}_{\alpha \beta}}\right)\left(\frac{\partial {a}_{\alpha \beta}}{\partial t}\right)\right) $$
(93)

The time derivative of F contains both reversible and irreversible contributions and can be written as

$$ \frac{dF}{dt}={\left.\frac{dF}{dt}\right|}_{rev}+{\left.\frac{dF}{dt}\right|}_{irr} $$
(94)

Using Eq. (4), we can write explicitly the reversible part as

$$ {\displaystyle \begin{array}{l}{\left.\frac{\mathrm{dF}}{\mathrm{dt}}\right|}_{\mathrm{rev}}=\int d\boldsymbol{r}{\left(\frac{\delta F}{\delta \boldsymbol{\varkappa}}\right)}^t.\mathbf{\mathcal{L}}.\left(\frac{\delta \Phi}{\delta \boldsymbol{\varkappa}}\right)\\ {}=\int d\boldsymbol{r}\left(\frac{\delta F}{\delta \rho}\right)\left(\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta \rho}\right)\right)+\left(\frac{\delta F}{\delta c}\right)\left(\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta c}\right)\right)+\left(\frac{\delta F}{\delta {u}_{\alpha }}\right)\left(\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta {u}_{\alpha }}\right)\right)+\left(\frac{\delta F}{\delta {J}_{\alpha }}\right)\left(\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta {J}_{\alpha }}\right)\right)+\left(\frac{\delta F}{\delta {a}_{\alpha \beta}}\right)\left(\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta {a}_{\alpha \beta}}\right)\right)\end{array}} $$
(95)

Using Eq. (6), we can express the irreversible part as

$$ {\displaystyle \begin{array}{l}{\left.\frac{dF}{dt}\right|}_{irr}=-\int d\boldsymbol{r}\left(\frac{\delta \mathrm{F}}{\delta \boldsymbol{\varkappa}}\right).\left(\frac{\delta \Xi}{\delta \left(\delta \Phi /\delta \boldsymbol{\varkappa}\right)}\right)\\ {}=-\int dr\left(\frac{\delta F}{\delta \rho}\right)\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta \rho \right)}\right)+\left(\frac{\delta F}{\delta c}\right)\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta c\right)}\right)+\left(\frac{\delta F}{\delta {u}_{\alpha }}\right)\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta {u}_{\alpha}\right)}\right)+\left(\frac{\delta F}{\delta {J}_{\alpha }}\right)\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta {J}_{\alpha}\right)}\right)+\left(\frac{\delta F}{\delta {a}_{\alpha \beta}}\right)\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta {a}_{\alpha \beta}\right)}\right)\end{array}} $$
(96)

Now by using Eqs. (9396), and by matching the different terms corresponding to the same multiplication factor (for example for the same multiplication factor, (δF/δρ), we obtain the term (∂ρ/∂t) appearing in (93), \( \mathbf{\mathcal{L}}.\left(\delta \varPhi /\delta \rho \right) \) in (95) and (−δΞ/δ(δΦ/δρ)) in (96) and so on for the rest of the state variables), we can write the governing equations for the state variables as

$$ {\displaystyle \begin{array}{l}\frac{\partial \rho }{\partial t}=\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta \rho}\right)-\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta \rho \right)}\right)\\ {}\frac{\partial {u}_{\alpha }}{\partial t}=\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta {u}_{\alpha }}\right)-\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta {u}_{\alpha}\right)}\right)\\ {}\begin{array}{l}\frac{\partial c}{\partial t}=\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta c}\right)-\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta c\right)}\right)\\ {}\frac{\partial {J}_{\alpha }}{\partial t}=\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta {J}_{\alpha }}\right)-\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta {J}_{\alpha}\right)}\right)\\ {}\frac{\partial {a}_{\alpha \beta}}{\partial t}=\mathbf{\mathcal{L}}.\left(\frac{\delta \varPhi}{\delta {a}_{\alpha \beta}}\right)-\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta {a}_{\alpha \beta}\right)}\right)\end{array}\end{array}} $$
(97)

Let us now determine each of the terms appearing in the governing equations. To this end, we start with the derived Poisson bracket (26), in which the function G is replaced by the free energy Φ , and then perform integration by parts. Thus the resulting Poisson bracket involves only derivatives of F and Φ with respect to the selected state variables. The next step is to factorize all the different terms that have the same Volterra derivative of F with respect to the same sate variable. For instance, for the state variable ρ the multiplication factor is (δF/δρ) and the associated term appearing in the Poisson bracket is −α(δΦ/δuα) which has in fact been designated previously by \( \mathbf{\mathcal{L}}.\left(\delta \varPhi /\delta \rho \right) \). We follow the same reasoning for the remaining state variables, i.e. (δF/δuα), (δF/δc), (δF/δJα) and (δF/δaαβ). Therefore, we obtain the following reversible terms corresponding to the reversible kinematics

$$ {\displaystyle \begin{array}{l}\mathbf{\mathcal{L}}.\left(\frac{\updelta \Phi}{\updelta \uprho}\right)=-{\partial}_{\upalpha}\left(\frac{\delta \Phi}{\delta {u}_{\alpha }}\right)\\ {}\mathbf{\mathcal{L}}.\left(\frac{\updelta \Phi}{\updelta \mathrm{c}}\right)=-\uprho \left(\frac{\updelta \Phi}{\updelta {\mathrm{u}}_{\upalpha}}\right){\partial}_{\upalpha}\mathrm{c}-{\partial}_{\upalpha}\left(\uprho \mathrm{c}\left(1-\mathrm{c}\right)\ \left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upalpha}}\right)\right)\\ {}\begin{array}{l}\mathbf{\mathcal{L}}.\left(\frac{\updelta \Phi}{\updelta {\mathrm{u}}_{\upalpha}}\right)=-{\partial}_{\beta}\left({u}_{\alpha}\left(\frac{\delta \Phi}{\delta {\mathrm{u}}_{\upbeta}}\right)\right)-\rho {\partial}_{\alpha}\left(\frac{\delta \Phi}{\delta \rho}\right)-{\mathrm{u}}_{\beta }{\partial}_{\alpha}\left(\frac{\updelta \Phi}{\updelta {\mathrm{u}}_{\beta }}\right)-{\mathrm{J}}_{\beta }{\partial}_{\alpha}\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\beta }}\right)+\left(\frac{\delta \Phi}{\delta c}\right){\partial}_{\alpha }c\\ {}\kern6em -{a}_{\upbeta \upgamma}\ {\partial}_{\alpha}\left(\frac{\delta \Phi}{\delta {a}_{\upgamma \upbeta}}\right)-{\partial}_{\beta}\left({\mathrm{J}}_{\upalpha}\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\beta }}\right)-2{\mathrm{a}}_{\upbeta \upgamma}\left(\frac{\updelta \Phi}{\updelta {\mathrm{a}}_{\upgamma \upalpha}}\right)\right)\\ {}\begin{array}{l}\mathbf{\mathcal{L}}.\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upalpha}}\right)=-{\partial}_{\upbeta}\left({\mathrm{J}}_{\upalpha}\left(\frac{\updelta \Phi}{\updelta {\mathrm{u}}_{\upbeta}}\right)\right)-{\mathrm{J}}_{\upbeta}{\partial}_{\upalpha}\left(\frac{\updelta \Phi}{\updelta {\mathrm{u}}_{\upbeta}}\right)+{\mathrm{c}\mathrm{\partial}}_{\upbeta}\left({\mathrm{J}}_{\upalpha}\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upbeta}}\right)\right)+{\mathrm{J}}_{\upbeta}{\partial}_{\upalpha}\left(\mathrm{c}\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upbeta}}\right)\\ {}\ \begin{array}{l}\kern6.75em -{\partial}_{\upbeta}\Big(\left(1-\mathrm{c}\right)\left(\mathrm{c}{\mathrm{u}}_{\upalpha}+{\mathrm{J}}_{\upalpha}\right)\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upbeta}}\right)-\left(1-\mathrm{c}\right)\left(\mathrm{c}{\mathrm{u}}_{\upbeta}+{\mathrm{J}}_{\upbeta}\right){\partial}_{\upalpha}\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upbeta}}\right)\\ {}\begin{array}{l}\kern7em +\frac{{\mathrm{u}}_{\upalpha}}{\uprho}{\partial}_{\upbeta}\left(\uprho \mathrm{c}\left(1-\mathrm{c}\right)\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upbeta}}\right)\right)+\uprho \mathrm{c}\left(1-\mathrm{c}\right){\partial}_{\upalpha}\left(\frac{{\mathrm{u}}_{\upbeta}}{\uprho}\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upbeta}}\right)\right)-\uprho \mathrm{c}\left(1-\mathrm{c}\right){\partial}_{\upalpha}\left(\frac{1}{\uprho}\frac{\updelta \Phi}{\updelta \mathrm{c}}\right)\\ {}\kern7em +\mathrm{c}{\mathrm{a}}_{\upgamma \upbeta}{\partial}_{\upalpha}\left(\frac{\updelta \Phi}{\updelta {\mathrm{a}}_{\upgamma \upbeta}}\right)-\mathrm{c}{\partial}_{\upbeta}\left(2{\mathrm{a}}_{\upalpha \upgamma}\ \left(\frac{\updelta \Phi}{\updelta {\mathrm{a}}_{\upgamma \upbeta}}\right)\right)\end{array}\end{array}\\ {}\begin{array}{l}\mathbf{\mathcal{L}}.\left(\frac{\updelta \Phi}{\updelta {\mathrm{a}}_{\upalpha \upbeta}}\right)=-{\partial}_{\upgamma}\left({\mathrm{a}}_{\upalpha \upbeta}\ \left(\frac{\updelta \Phi}{\updelta {\mathrm{u}}_{\upgamma}}\right)\right)+{\mathrm{a}}_{\upalpha \upgamma}{\partial}_{\upgamma}\left(\frac{\updelta \Phi}{\updelta {\mathrm{u}}_{\upbeta}}\right)+{\mathrm{a}}_{\upbeta \upgamma}{\partial}_{\upgamma}\left(\frac{\updelta \Phi}{\updelta {\mathrm{u}}_{\upalpha}}\right)+{\partial}_{\upgamma}\left({\mathrm{a}}_{\upalpha \upbeta}\ \mathrm{c}\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upgamma}}\right)\right)\\ {}\kern7.25em -{\mathrm{a}}_{\upalpha \upgamma}{\partial}_{\upgamma}\left(\mathrm{c}\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upbeta}}\right)\right)-{\mathrm{a}}_{\upbeta \upgamma}{\partial}_{\upgamma}\left(\mathrm{c}\left(\frac{\updelta \Phi}{\updelta {\mathrm{J}}_{\upalpha}}\right)\right)\end{array}\end{array}\end{array}\end{array}} $$
(98)

We proceed in a similar way with the dissipation potential (27) to obtain the irreversible kinematics

$$ {\displaystyle \begin{array}{l}\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta \rho \right)}\right)=0\\ {}\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta c\right)}\right)=0\\ {}\begin{array}{l}\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta {u}_{\alpha}\right)}\right)=-{\partial}_{\beta}\left(\eta (c)\left({\partial}_{\beta}\left(\frac{\delta \varPhi}{\delta {u}_{\alpha }}\right)+{\partial}_{\alpha}\left(\frac{\delta \varPhi}{\delta {u}_{\beta }}\right)\right.\right)+{\delta}_{\alpha \beta}\left(\left({\eta}_d-\frac{2}{3}\eta \right){\partial}_{\gamma}\left(\frac{\delta \varPhi}{\delta {u}_{\gamma }}\right)\right)\\ {}\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta {J}_{\alpha}\right)}\right)=-\rho c\left(1-c\right){\varLambda}_J(c)\ \left(\frac{\delta \varPhi}{\delta {J}_{\alpha }}\right)\\ {}\left(\frac{\delta \varXi}{\delta \left(\delta \varPhi /\delta {a}_{\alpha \beta}\right)}\right)=-{\varLambda}_a(c){a}_{\alpha \gamma}\left(\frac{\delta \varPhi}{\delta {a}_{\gamma \beta}}\right)\end{array}\end{array}} $$
(99)

Replacing Eqs. (98) and Eqs. (99) into Eqs. (97) gives Eqs. (2835).

Appendix C

Derivation of Eq. (45)

Our aim here is to derive Eq. (45). We start with Eqs. (43) and replace them into Eq. (34). The result is

$$ {\displaystyle \begin{array}{l}\frac{\partial {J}_{\alpha }}{\mathrm{\partial t}}=-{\partial}_{\upbeta}\left({J}_{\upalpha}{v}_{\beta}\right)-{J}_{\beta }{\partial}_{\upbeta}{v}_{\upalpha}+{\mathrm{c}\mathrm{\partial}}_{\upbeta}\left(\frac{{\mathrm{J}}_{\upalpha}{\mathrm{J}}_{\upbeta}}{\uprho \mathrm{c}\left(1-\mathrm{c}\right)}\right)-{\partial}_{\upbeta}\left(\frac{{\mathrm{J}}_{\upalpha}{\mathrm{J}}_{\upbeta}}{\uprho \mathrm{c}}\right)-\uprho \mathrm{c}\left(1-\mathrm{c}\right){\partial}_{\upalpha}\left(\frac{1}{\rho}\frac{\delta \varphi}{\delta c}\right)\\ {}+\mathrm{c}{\mathrm{a}}_{\upgamma \upbeta}{\partial}_{\alpha}\left(\frac{\delta \varphi}{\delta {a}_{\upgamma \upbeta}}\right)-\mathrm{c}{\partial}_{\upbeta}\left(2{\mathrm{a}}_{\upbeta \upgamma}\ \left(\frac{\delta \varphi}{\delta {a}_{\upgamma \upalpha}}\right)\right)-{\Lambda}_{\mathrm{J}}\left(\mathrm{c}\right)\ {J}_{\alpha}\end{array}} $$
(100)

The same reasoning gives for the pressure

$$ p=-\varphi +\rho \left(\frac{\delta \varphi}{\delta \rho}\right)+{a}_{\alpha \beta}\left(\frac{\delta \varphi}{\delta {a}_{\alpha \beta}}\right) $$
(101)

Using the assumption of absence of flow, i.e., v =0, the symmetric second-order extra stress tensor is given by:

$$ {\sigma}_{\alpha \beta}=\frac{{\mathrm{J}}_{\upalpha}{\mathrm{J}}_{\upbeta}}{\uprho \mathrm{c}\left(1-\mathrm{c}\right)}-2{a}_{\alpha \gamma}\ \left(\frac{\delta \varPhi}{\delta {a}_{\gamma \beta}}\right) $$
(102)

The mechanical equilibrium assumption, i.e., αp + βσβα = 0, gives

$$ \rho {\partial}_{\alpha}\left(\frac{\delta \varphi}{\delta \rho}\right)-\left(\frac{\delta \varphi}{\delta c}\right){\partial}_{\alpha }c+{a}_{\beta \gamma}\ {\partial}_{\alpha}\left(\frac{\delta \varphi}{\delta {a}_{\gamma \beta}}\right)+{\partial}_{\beta}\left(\frac{J_{\alpha }{J}_{\beta }}{\rho c\left(1-c\right)}\right)-{\partial}_{\beta}\left(2{a}_{\alpha \gamma}\ \left(\frac{\delta \varphi}{\delta {a}_{\gamma \beta}}\right)\right)=0 $$
(103)

Now inserting Eq. (103) into Eq. (100) and using the fact that δφ/δρs = δφ/δρ + ((1 − c)/ρ)δφ/δc (since v =0), we obtain a new simplified time evolution equation for the mass flux

$$ \frac{\partial {J}_{\alpha }}{\mathrm{\partial t}}=-{\partial}_{\upbeta}\left(\frac{{\mathrm{J}}_{\upalpha}{\mathrm{J}}_{\upbeta}}{\uprho \mathrm{c}}\right)-{\rho}_s{\partial}_{\alpha}\left(\frac{\delta \varphi}{\delta {\rho}_s}\right)-{\Lambda}_{\mathrm{J}}\left(\mathrm{c}\right)\ {J}_{\alpha } $$
(104)

Finally, using the incompressibility constraint ρ = Const, we have

$$ \frac{\partial {J}_{\alpha }}{\mathrm{\partial t}}=-{\partial}_{\upbeta}\left(\frac{{\mathrm{J}}_{\upalpha}{\mathrm{J}}_{\upbeta}}{\uprho \mathrm{c}}\right)-c{\partial}_{\alpha}\left(\frac{\delta \varphi}{\delta c}\right)-{\Lambda}_{\mathrm{J}}\left(\mathrm{c}\right)\ {J}_{\alpha } $$
(105)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentis, S., El Afif, A. Diffusion, extensibility, flow, and orientation coupling in polymers filled with extensible and flexible fibers. Rheol Acta 60, 23–47 (2021). https://doi.org/10.1007/s00397-020-01253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-020-01253-1

Keywords

Navigation