Re-entrant solid behavior of 3D-printable epoxy inks

Abstract

Transient creep testing was used to differentiate the printability of block copolymer (BCP) containing epoxy inks for direct ink writing (DIW). Poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) (P123) BCPs were shown to form disordered micelles at 20 wt% in a 3D-printable epoxy ink. Oscillatory amplitude sweeps identified no obvious difference in the rheological properties of the inks; however, the P123 inks required less pressure to print quality parts. By contrast, transient creep testing identified significant differences and showed that the P123 ink had a lower apparent yield stress and a lower time-dependent decrease in the shear rate. Additionally, both inks showed re-entrant solid behavior. This behavior manifests in printing as a material that initially flows well, but the material flow eventually stops. The transient creep results correlate well with the printing results. We propose that studying the time-dependent flow properties using transient creep testing is critical for the evaluation of DIW inks.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

Most data that was generated and analyzed during this study is included in this published article. Any additional datasets are available from the corresponding author on request.

References

  1. Balmforth NJ, Frigaard IA, Ovarlez G (2014) Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu Rev Fluid Mech 46:121–146. https://doi.org/10.1146/annurev-fluid-010313-141424

    Article  Google Scholar 

  2. Barnes HA (1999) The yield stress-a review or ‘παντα ρει’-everything flows? J Non-Newtonian Fluid Mech 81:133–178. https://doi.org/10.1016/S0377-0257(98)00094-9

    Article  CAS  Google Scholar 

  3. Bauer T, Oberdisse J, Ramos L (2006) Collective rearrangement at the onset of flow of a polycrystalline hexagonal columnar phase. Phys Rev Lett 97:258303. https://doi.org/10.1103/PhysRevLett.97.258303

    Article  CAS  Google Scholar 

  4. Bergenholtz J, Fuchs M (1999) Nonergodicity transitions in colloidal suspensions with attractive interactions. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 59:5706–5715. https://doi.org/10.1103/PhysRevE.59.5706

    Article  CAS  Google Scholar 

  5. Bockstaller MR, Lapetnikov Y, Margel S, Thomas EL (2003) Size-selective organization of enthalpic compatibilized nanocrystals in ternary block copolymer/particle mixtures. J Am Chem Soc 125:5276–5277. https://doi.org/10.1021/ja034523t

    Article  CAS  Google Scholar 

  6. Bonn D, Denn MM, Berthier L, Divoux T, Manneville S (2017) Yield stress materials in soft condensed matter. Rev Mod Phys 89:03505. https://doi.org/10.1103/RevModPhys.89.035005

    Article  Google Scholar 

  7. Caton F, Baravian C (2008) Plastic behavior of some yield stress fluids: from creep to long-time yield. Rheol Acta 47:601–607. https://doi.org/10.1007/s00397-008-0267-2

    Article  CAS  Google Scholar 

  8. Christopoulou C, Petekidis G, Erwin B, Cloitre M, Vlassopoulos D (2009) Ageing and yield behaviour in model soft colloidal glasses. Philos Trans R Soc A Math Phys Eng Sci 367:5051–5071. https://doi.org/10.1098/rsta.2009.0166

    Article  CAS  Google Scholar 

  9. Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26:5930–5935. https://doi.org/10.1002/adma.201401804

    Article  CAS  Google Scholar 

  10. Coussot P (2014) Yield stress fluid flows: a review of experimental data. J Non-Newtonian Fluid Mech 211:31–49. https://doi.org/10.1016/j.jnnfm.2014.05.006

    Article  CAS  Google Scholar 

  11. Coussot P (2018) Slow flows of yield stress fluids: yielding liquids or flowing solids? Rheol Acta 57:1–14. https://doi.org/10.1007/s00397-017-1055-7

    Article  CAS  Google Scholar 

  12. Dinkgreve M, Denn MM, Bonn D (2017) “Everything flows?”: elastic effects on startup flows of yield-stress fluids. Rheol Acta 56:189–194. https://doi.org/10.1007/s00397-017-0998-z

    Article  CAS  Google Scholar 

  13. Dinkgreve M, Paredes J, Denn MM, Bonn D (2016) On different ways of measuring “the” yield stress. J Non-Newtonian Fluid Mech 238:233–241. https://doi.org/10.1016/j.jnnfm.2016.11.001

    Article  CAS  Google Scholar 

  14. Divoux T, Barentin C, Manneville S (2011) From stress-induced fluidization processes to Herschel-Bulkley behaviour in simple yield stress fluids. Soft Matter 7:8409–8418. https://doi.org/10.1039/c1sm05607g

    Article  CAS  Google Scholar 

  15. Donley GJ, de Bruyn JR, McKinley GH, Rogers SA (2019a) Time-resolved dynamics of the yielding transition in soft materials. J Non-Newtonian Fluid Mech 264:117–134. https://doi.org/10.1016/j.jnnfm.2018.10.003

    Article  CAS  Google Scholar 

  16. Donley GJ, Hyde WW, Rogers SA, Nettesheim F (2019b) Yielding and recovery of conductive pastes for screen printing. Rheol Acta 58:361–382. https://doi.org/10.1007/s00397-019-01148-w

    Article  CAS  Google Scholar 

  17. Drummy LF, Koerner H, Farmer K, Tan A, Farmer BL, Vaia RA (2005) High-resolution electron microscopy of montmorillonite and montmorillonite/epoxy nanocomposites. J Phys Chem B 109:17868–17878. https://doi.org/10.1021/jp053133l

    Article  CAS  Google Scholar 

  18. Duty C, Ajinjeru C, Kishore V, Compton B, Hmeidat N, Chen X, Liu P, Hassen AA, Lindahl J, Kunc V (2018) What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers. J Manuf Process 35:526–537. https://doi.org/10.1016/j.jmapro.2018.08.008

    Article  Google Scholar 

  19. Fernandes RR, Andrade DEV, Franco AT, Negrão COR (2017) The yielding and the linear-to-nonlinear viscoelastic transition of an elastoviscoplastic material. J Rheol 61:893–903. https://doi.org/10.1122/1.4991803

    Article  CAS  Google Scholar 

  20. Guo Q, Thomann R, Gronski W, Thurn-Albrecht T (2002) Phase behavior, crystallization, and hierarchical nanostructures in self-organized thermoset blends of epoxy resin and amphiphilic poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers. Macromolecules. 35:3133–3144. https://doi.org/10.1021/ma011971h

    Article  CAS  Google Scholar 

  21. Hmeidat NS, Kemp JW, Compton BG (2018) High-strength epoxy nanocomposites for 3D printing. Compos Sci Technol 160:9–20. https://doi.org/10.1016/j.compscitech.2018.03.008

    Article  CAS  Google Scholar 

  22. Jakus AE, Taylor SL, Geisendorfer NR, Dunand DC, Shah RN (2015) Metallic architectures from 3D-printed powder-based liquid inks. Adv Funct Mater 25:6985–6995. https://doi.org/10.1002/adfm.201503921

    Article  CAS  Google Scholar 

  23. Johnson KJ, Wiegart L, Abbott AC, Johnson EB, Baur JW, Koerner H (2019) In operando monitoring of dynamic recovery in 3D-printed thermoset nanocomposites by XPCS. Langmuir 35:8758–8768. https://doi.org/10.1021/acs.langmuir.9b00766

    Article  CAS  Google Scholar 

  24. Kim CS, Randow C, Sano T (eds) (2015) Hybrid and hierarchical composite materials. Springer, Cham. https://doi.org/10.1007/978-3-319-12868-9

  25. Koerner H, Misra D, Tan A, Drummy L, Mirau P, Vaia R (2006) Montmorillonite-thermoset nanocomposites via cryo-compounding. Polymer 47:3426–3435. https://doi.org/10.1016/j.polymer.2006.03.057

    Article  CAS  Google Scholar 

  26. Landrum BJ, Russel WB, Zia RN (2016) Delayed yield in colloidal gels: creep, flow, and re-entrant solid regimes. J Rheol (N Y N Y) 60:783–807. https://doi.org/10.1122/1.4954640

    Article  CAS  Google Scholar 

  27. Larrañaga M, Gabilondo N, Kortaberria G et al (2005) Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO-PPO-PEO triblock copolymer. Polymer 46:7082–7093. https://doi.org/10.1016/j.polymer.2005.05.102

    Article  CAS  Google Scholar 

  28. Larranaga M, Martín MD, Gabilondo N et al (2004) Cure kinetics of epoxy systems modified with block copolymers. Polym Int 53:1495–1502. https://doi.org/10.1002/pi.1574

    Article  CAS  Google Scholar 

  29. Larrañaga M, Martin MD, Gabilondo N, Kortaberria G, Eceiza A, Riccardi CC, Mondragon I (2006) Toward microphase separation in epoxy systems containing PEO-PPO-PEO block copolymers by controlling cure conditions and molar ratios between blocks. Colloid Polym Sci 284:1403–1410. https://doi.org/10.1007/s00396-006-1512-9

    Article  CAS  Google Scholar 

  30. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204. https://doi.org/10.1002/adfm.200600434

    Article  CAS  Google Scholar 

  31. Li L, Lin Q, Tang M, Duncan AJE, Ke C (2019) Advanced polymer designs for direct-ink-write 3D printing. Chem A Eur J 25:10768–10781. https://doi.org/10.1002/chem.201900975

    Article  CAS  Google Scholar 

  32. Møller PCF, Fall A, Bonn D (2009) Origin of apparent viscosity in yield stress fluids below yielding. EPL 87:38004. https://doi.org/10.1209/0295-5075/87/38004

    Article  CAS  Google Scholar 

  33. Nelson AZ, Schweizer KS, Rauzan BM, Nuzzo RG, Vermant J, Ewoldt RH (2019) Designing and transforming yield-stress fluids. Curr Opin Solid State Mater Sci 23:100758. https://doi.org/10.1016/j.cossms.2019.06.002

    Article  CAS  Google Scholar 

  34. Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24:47–88. https://doi.org/10.1146/annurev.fl.24.010192.000403

    Article  Google Scholar 

  35. Orilall MC, Wiesner U (2011) Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. Chem Soc Rev 40:520–535. https://doi.org/10.1039/c0cs00034e

    Article  CAS  Google Scholar 

  36. Raney JR, Compton BG, Mueller J, Ober TJ, Shea K, Lewis JA (2018) Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc Natl Acad Sci U S A 115:1198–1203. https://doi.org/10.1073/pnas.1715157115

    Article  CAS  Google Scholar 

  37. Ruiz-Pérez L, Royston GJ, Fairclough JPA, Ryan AJ (2008) Toughening by nanostructure. Polymer. 49:4475–4488. https://doi.org/10.1016/j.polymer.2008.07.048

    Article  CAS  Google Scholar 

  38. Taheri SM, Fischer S, Förster S (2011) Routes to nanoparticle-polymer superlattices. Polymers. 3:662–673. https://doi.org/10.3390/polym3020662

    Article  CAS  Google Scholar 

  39. Thompson RB, Ginzburg VV, Matsen MW, Balazs AC (2001) Predicting the mesophases of copolymer-nanoparticle composites. Science. 292:2469–2472. https://doi.org/10.1126/science.1060585

    Article  CAS  Google Scholar 

  40. Vaia RA, Liu W, Koerner H (2003) Analysis of small-angle scattering of suspensions of organically modified montmorillonite: implications to phase behavior of polymer nanocomposites. J Polym Sci B Polym Phys 41:3214–3236. https://doi.org/10.1002/polb.10698

    Article  CAS  Google Scholar 

  41. Wang J, Li W, Zhu J (2014) Encapsulation of inorganic nanoparticles into block copolymer micellar aggregates: strategies and precise localization of nanoparticles. Polymer 55:1079–1096. https://doi.org/10.1016/j.polymer.2014.01.027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Sungsik Lee at Argonne National Laboratory for his help and support with the SAXS experiments. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The Anton Paar Academic VIP program is gratefully acknowledged for the use of the MCR 702 rheometer.

Funding

This work is supported through a YIP award funded by the AFOSR Low Density Materials program under grant number FA9550-17-1-0128.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel V. Krogstad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ekbote, R.P., Donley, G.J., Liu, D.Y. et al. Re-entrant solid behavior of 3D-printable epoxy inks. Rheol Acta 59, 631–638 (2020). https://doi.org/10.1007/s00397-020-01227-3

Download citation

Keywords

  • Block copolymer
  • Creep
  • Rheology
  • Scattering