Skip to main content
Log in

Investigation of thermoplastic melt flow and dimensionless groups in 3D bioplotting

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We investigate the key 3D bioplotting processing parameters, including needle diameter and dispensing pressure, on the shear rates, shear stresses, pressure drops, and swell ratios of extruded miscible polycaprolactone (PCL) blends having a range of viscosities. Assuming simple capillary flow, we construct flow curves and we estimate that the shear stresses inside the needle of the bioplotter range from 2500 to 20,000 Pa and the corresponding shear rates from 2 to 25 s−1, depending upon the viscosity of the blend. We further identify relevant dimensionless numbers that reflect the material rheological properties and processing conditions; these include the capillary number (Ca), Bond number (Bo), Weissenberg number (Wi), and elasticity number (El). At most processing conditions Ca > 1, whereas Bo < 1, suggesting that viscous forces dominated surface forces, except for needle diameters below 0.2 mm, where the flow approached micro-fluidic conditions. While Wi was below 1 at all conditions, El increased significantly with decreasing needle diameter. High El numbers at a needle internal diameter of 0.2 mm were associated with extrudate swell ratios above 2. Based on these results, we define ranges of operation in 3D bioplotting, which can serve as guidelines for process design. Even though this work is specific on the particular bioplotting equipment, the methodology described herein can be applied on any type of micro-extrusion equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bañobre-López M, Piñeiro-Redondo Y, De Santis R, Gloria A, Ambrosio L, Tampieri A, Dediu V, Rivas J (2011) Poly(caprolactone) based magnetic scaffolds for bone tissue engineering. J Appl Phys 109:07B313

    Article  Google Scholar 

  • Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111

    Article  Google Scholar 

  • Chien R-D, Jong W-R, Chen S-C (2005) Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect. J Micromech Microeng 15:1389–1396

    Article  Google Scholar 

  • Coogan TJ, Kazmer DO (2019) In-line rheological monitoring of fused deposition modeling. J Rheol 63:141–155

    Article  CAS  Google Scholar 

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  • Dealy JM, Wissbrun KF (1999) Linear viscoelasticity. In: Melt rheology and its role in plastics processing. Springer Netherlands, Dordrecht, pp 42–102

    Chapter  Google Scholar 

  • Falsafi A, Mangipudi S, Owen MJ (2007) Surface and interfacial properties. In: Physical properties of polymers handbook. Springer New York, New York, pp 1011–1020

    Chapter  Google Scholar 

  • Fedorovich NE, Swennen I, Girones J, Moroni L, Van Blitterswijk CA, Schacht E, Alblas J, Dhert WJA (2009) Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules 10:1689–1696

    Article  CAS  Google Scholar 

  • Findrik Balogová A, Hudák R, Tóth T, Schnitzer M, Feranc J, Bakoš D, Živčák J (2018) Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution. J Biotechnol 284:123–130

    Article  Google Scholar 

  • Li JP, De Wijn JR, Van Blitterswijk CA, De Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27:1223–1235

    Article  CAS  Google Scholar 

  • Mackay ME (2018) The importance of rheological behavior in the additive manufacturing technique material extrusion. J Rheol 62:1549

    Article  CAS  Google Scholar 

  • Mackay ME, Swain ZR, Banbury CR, Phan DD, Edwards DA (2017) The performance of the hot end in a plasticating 3D printer. J Rheol 61:229–236

    Article  CAS  Google Scholar 

  • Maher PS, Keatch RP, Donnelly K, Mackay RE, Paxton JZ (2009) Construction of 3D biological matrices using rapid prototyping technology. Rapid Prototyp J 15:204–210

    Article  Google Scholar 

  • McIlroy C, Olmsted PD (2017) Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing. J Rheol 61:379–397

    Article  CAS  Google Scholar 

  • Mehendale SV, Mellor LF, Taylor MA, Loboa EG, Shirwaiker RA (2017) Effects of 3D-bioplotted polycaprolactone scaffold geometry on human adipose-derived stem cell viability and proliferation. Rapid Prototyp J 23:534–542

    Article  Google Scholar 

  • Mendes R, Fanzio P, Campo-Deaño L, Galindo-Rosales FJ (2019) Microfluidics as a platform for the analysis of 3D printing problems. Materials (Basel) 12(17):2839

    Article  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  Google Scholar 

  • Noroozi N, Thomson JA, Noroozi N, Schafer LL, Hatzikiriakos SG (2012) Viscoelastic behaviour and flow instabilities of biodegradable poly (ε-caprolactone) polyesters. Rheol Acta 51:179–192

    Article  CAS  Google Scholar 

  • Pastore Carbone MG, Di Maio E, Scherillo G, Mensitieri G, Iannace S (2012) Solubility, mutual diffusivity, specific volume and interfacial tension of molten PCL/CO2 solutions by a fully experimental procedure: effect of pressure and temperature. J Supercrit Fluids 67:131–138

    Article  CAS  Google Scholar 

  • Phan DD, Swain ZR, Mackay ME (2018) Rheological and heat transfer effects in fused filament fabrication. J Rheol 62:1097–1107

    Article  CAS  Google Scholar 

  • Pionteck J (2018) Determination of pressure dependence of polymer phase transitions by pVT analysis. Polymers 10:578

    Article  Google Scholar 

  • Pipe CJ, McKinley GH (2008) Microfluidic rheometry. Mech Res Commun 36:110–120 3D bioplotter price list (2014): EnvisionTEC Gmbh. pp 5

    Article  Google Scholar 

  • Ramkumar DHS, Bhattacharya M (1998) Steady shear and dynamic properties of biodegradable polyesters. Polym Eng Sci 38:1426–1435

    Article  CAS  Google Scholar 

  • Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH (2005) The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries. J Non-Newtonian Fluid Mech 129:1–22

    Article  CAS  Google Scholar 

  • Saengow C, Giacomin AJ, Grizzuti N, Pasquino R (2019) Startup steady shear flow from the Oldroyd 8-constant framework. Phys Fluids 31:063101

    Article  Google Scholar 

  • Sarker M, Chen XB (2017) Modeling the flow behavior and flow rate of medium viscosity alginate for scaffold fabrication with a three-dimensional bioplotter. J Manuf Sci Eng 139:081002

    Article  Google Scholar 

  • Sheshadri P, Shirwaiker RA (2015) Characterization of material–process–structure interactions in the 3D bioplotting of polycaprolactone. 3D Print Addit Manuf 2:20–31

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  CAS  Google Scholar 

  • Wagner M, Kiapur N, Wiedmann-Al-Ahmad M, Hübner U, Al-Ahmad A, Schön R, Schmelzeisen R, Mülhaupt R, Gellrich NC (2007) Comparative in vitro study of the cell proliferation of ovine and human osteoblast-like cells on conventionally and rapid prototyping produced scaffolds tailored for application as potential bone replacement material. J Biomed Mater Res Part A 83:1154–1164

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Natural Sciences and Engineering Council of Canada (NSERC), through the Discovery program. Funding was received from the Way Trust Memorial Award (Queen’s University), and a Queen’s Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Kontopoulou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopi, S., Kontopoulou, M. Investigation of thermoplastic melt flow and dimensionless groups in 3D bioplotting. Rheol Acta 59, 83–93 (2020). https://doi.org/10.1007/s00397-019-01186-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-019-01186-4

Keywords

Navigation