Skip to main content

Yield stress and rheology of a self-associating chitosan solution

Abstract

We report that aqueous solutions of high molecular weight chitosan display a regime of shear thinning at low shear rates that is consistent with the existence of an apparent yield stress. The concentration-dependent scaling of the apparent yield stress, σ0(c)~c2.8±0.2 in the concentration range c = 7.50–65.0 mg/mL, is consistent with a solution microstructure of fractal clusters. Dynamic light scattering measurements at high concentration indicate extremely slow microdynamics, consistent with the presence of a structured network or glassy fluid. At shear rates above yielding, a constant viscosity plateau was observed with concentration-dependent scaling below the gel point consistent with existing models of entangled and associating polymers. The addition of urea, a hydrogen bond and hydrophobic interaction disrupter, did not change the reported concentration-dependent scaling of the apparent yield stress or the plateau viscosity but did weaken the apparent yield stress magnitude by ~ 30% on average.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Agulló E, Rodríguez MS, Ramos V, Albertengo L (2003) Present and future role of chitin and chitosan in food. Macromol Biosci 3(10):521–530

    Google Scholar 

  • Aranaz I, Acosta N, Civera C et al (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers (Basel) 10(2):213–238

    Google Scholar 

  • Augusto de Melo Marques F, Angelini R, Zaccarelli E et al (2015) Structural and microscopic relaxations in a colloidal glass. Soft Matter 11(3):466–471

    CAS  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Nonnewton Fluid Mech 56(3):221–251

    CAS  Google Scholar 

  • Berth G, Dautzenberg H (2002) The degree of acetylation of chitosans and its effect on the chain conformation in aqueous solution. Carbohydr Polym 47(1):39–51

    CAS  Google Scholar 

  • Bonn D, Denn MM, Berthier L et al (2017) Yield stress materials in soft condensed matter. Rev Mod Phys 89(3):035005(40)

    Google Scholar 

  • Buhler E, Rinaudo M (2000) Structural and dynamical properties of semirigid polyelectrolyte solutions: a light-scattering study. Macromolecules 33:2098–2106

    CAS  Google Scholar 

  • Carpineti M, Giglio M (1993) Transition from semiorder to disorder in the aggregation of dense colloidal solusions. Phys Rev Lett 70(24):3828–3831

    CAS  Google Scholar 

  • Carreau PJ, Cho J, Heuzey M (2006) Effect of urea on solution behavior and heat-induced gelation of chitosan-b-glycerophosphate. Carbohydr Polym 63:507–518

    Google Scholar 

  • Chen RH, Tsaih ML (2000) Urea-induced conformational changes of chitosan molecules and the shift of break point of Mark-Houwink equation by increasing urea concentration. J Appl Polym Sci 75:452–457

    CAS  Google Scholar 

  • Cho J, Heuzey M, Bégin A, Carreau PJ (2006a) Viscoelastic properties of chitosan solutions: effect of concentration and ionic strength. J Food Eng 74(4):500–515

    CAS  Google Scholar 

  • Cho J, Heuzey MC, Bégin A, Carreau PJ (2006b) Effect of urea on solution behavior and heat-induced gelationof chitosan-β-glycerophosphate. Carbohydr Polym 63(4):507–518

    CAS  Google Scholar 

  • Cipelletti L, Ramos L, Manley S et al (2003) Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss 123:237–251

    CAS  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70

    CAS  Google Scholar 

  • Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan - a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014

    CAS  Google Scholar 

  • de Gennes P-G (1985) Scaling concepts in polymer physics, 2nd edn. Cornell University Press

  • de Morais WA, Pereira MR, Fonseca JLC (2012) Characterization of gelification of chitosan solutions by dynamic light scattering. Carbohydr Polym 87(4):2376–2380

    Google Scholar 

  • Desbrières J (2002) Viscosity of semiflexible chitosan solutions: influence of concentration, temperature, and role of intermolecular interactions. Biomacromolecules 3:342–349

    Google Scholar 

  • Dobrynin AV, Colby RH, Rubinstein M (1995) Scaling theory of polyelectrolyte solutions. macromolecules 28(6):1859–1871

    CAS  Google Scholar 

  • Doench I, Torres-Ramos MEW, Montembault A et al (2018) Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering. Polymers 10(11):1202–1229

    Google Scholar 

  • dos Santos ZM, Caroni ALPF, Pereira MR et al (2009) Determination of deacetylation degree of chitosan: a comparison between conductometric titration and CHN elemental analysis. Carbohydr Res 344(18):2591–2595

    Google Scholar 

  • Eberle APR, Castañeda-Priego R, Kim JM, Wagner NJ (2012) Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions. Langmuir 28(3):1866–1878

    CAS  Google Scholar 

  • Esquenet C, Terech P, Boué F, Buhler E (2004) Structural and rheological properties of hydrophobically modified polysaccharide associative networks. Langmuir 20(9):3583–3592

    CAS  Google Scholar 

  • Ganesan M, Knier S, Younger JG, Solomon MJ (2016) Associative and entanglement contributions to the solution rheology of a bacterial polysaccharide. Macromolecules 49(21):8313–8321

    CAS  Google Scholar 

  • Heo Y, Larson RG (2005) The scaling of zero-shear viscosities of semidilute polymer solutions with concentration. J Rheol 49(5):1117–1128

    CAS  Google Scholar 

  • Horinaka JI, Urabayashi Y, Takigawa T, Ohmae M (2013) Entanglement network of chitin and chitosan in ionic liquid solutions. J Appl Polym Sci 130(4):2439–2443

    CAS  Google Scholar 

  • Hwang JK, Shin HH (2001) Rheological properties of chitosan solutions. Korea-Australia Rheol J 12:175–179

    Google Scholar 

  • Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36:12–21

    CAS  Google Scholar 

  • Jin L, Shangguan Y, Ye T et al (2013) Shear-induced self-thickening in chitosan-grafted polyacrylamide aqueous solution. Soft Matter 9(6):1835–1843

    CAS  Google Scholar 

  • Joosten JGH, Geladé ETF, Pusey PN (1990) Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels. Phys Rev A 42(4):2161–2175

    CAS  Google Scholar 

  • Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11

    CAS  Google Scholar 

  • Kjøniksen A-L, Iversen C, Nyström B et al (1998) Light scattering study of semidilute aqueous systems of chitosan and hydrophobically modified chitosans. Macromolecules 31(23):8142–8148

    Google Scholar 

  • Korchagina EV, Philippova OE (2010) Multichain aggregates in dilute solutions of associating polyelectrolyte keeping a constant size at the increase in the chain length of individual macromolecules. Biomacromolecules 11(12):3457–3466

    CAS  Google Scholar 

  • Koziol M, Fischer K, Seiffert S (2019) Origin of the low-frequency plateau and the light-scattering slow mode in semidilute poly(ethylene glycol) solutions. Soft Matter 15:2666–2676

    CAS  Google Scholar 

  • Krall AH, Weitz DA (1998) Internal dynamics and elasticity of fractal colloidal gels. Phys Rev Lett 80(4):778–781

    CAS  Google Scholar 

  • Lapasin R, Pricl S (2012) Rheology of polysaccharide systems. In: Rheology of industrial polysaccharides: theory and applications. Springer Science & Business Media, pp 250–494

  • Liu Z, Jiao Y, Wang Y et al (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662

    CAS  Google Scholar 

  • Lucchesi L, Xie H (2015) Wound dressing devices and methods

  • Martínez-Ruvalcaba A, Chornet E, Rodrigue D (2004) Steady-shear rheology of concentrated chitosan solutions. J Texture Stud 35:53–74

    Google Scholar 

  • Mohraz A, Solomon MJ (2005) Orientation and rupture of fractal colloidal gels during start-up of steady shear flow. J Rheol 49(3):657–681

    CAS  Google Scholar 

  • Møller PCF, Fall A, Bonn D (2009) Origin of apparent viscosity in yield stress fluids below yielding. EPL 87(3):38004

    Google Scholar 

  • Muzzarelli RAA (1993) Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohydr Polym 20:7–16

    CAS  Google Scholar 

  • Nyström B, Kjøniksen A-L, Iversen C (1999) Characterization of association phenomena in aqueous systems of chitosan of different hydrophobicity. Adv Colloid Interf Sci 79:81–103

    Google Scholar 

  • Park JW, Park K-H (1983) Acid-base equilibria and related properties of chitosan. Bull Kor Chem Soc 4(2):68–72

    CAS  Google Scholar 

  • Payet L, Ponton A, Grossiord JL, Agnely F (2010) Structural and rheological properties of chitosan semi-interpenetrated networks. Eur Phys J E Soft Matter 32:109–118

    CAS  Google Scholar 

  • Philippova OE, Korchagina EV (2012) Chitosan and its hydrophobic derivatives: preparation and aggregation in dilute aqueous solutions. Polym Sci Ser A 54(7):552–572

    CAS  Google Scholar 

  • Philippova OE, Volkov EV, Sitnikova NL et al (2001) Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative. Biomacromolecules 2(2):483–490

    CAS  Google Scholar 

  • Philippova OE, Korchagina EV, Volkov EV et al (2012) Aggregation of some water-soluble derivatives of chitin in aqueous solutions: role of the degree of acetylation and effect of hydrogen bond breaker. Carbohydr Polym 87(1):687–694

    CAS  Google Scholar 

  • Piau JM (2007) Carbopol gels: elastoviscoplastic and slippery glasses made of individual swollen sponges. J Nonnewton Fluid Mech 144(1):1–29

    CAS  Google Scholar 

  • Piau JM, Dorget M, Palierne JF, Pouchelon A (2002) Shear elasticity and yield stress of silica–silicone physical gels: fractal approach. J Rheol 43(2):305–314

    Google Scholar 

  • Popa-Nita S, Alcouffe P, Rochas C et al (2010) Continuum of structural organization from chitosan solutions to derived physical forms. Biomacromolecules 11(1):6–12

    CAS  Google Scholar 

  • Rabea EI, Badawy ME-T, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    CAS  Google Scholar 

  • Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34(1):21–28

    CAS  Google Scholar 

  • Ren SZ, Sorensen CM (1993) Relaxation in gels: analogies to alpha and beta relaxation in glasses. Phys Rev Lett 70(11):1727–1730

    CAS  Google Scholar 

  • Rodd AB, Dunstan DE, Boger DV (2000) Characterisation of xanthan gum solutions using dynamic light scattering and rheology. Carbohydr Polym 42:159–174

    CAS  Google Scholar 

  • Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47:67–77

    CAS  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics, 1st edn, Oxford

  • Rubinstein M, Semenov AN (2001) Dynamics of entangled solutions of associating polymers. Macromolecules 34(4):1058–1068

    CAS  Google Scholar 

  • Semenov AN, Rubinstein M (2002) Dynamics of entangled associating polymers with large aggregates. Macromolecules 35(12):4821–4837

    CAS  Google Scholar 

  • Sogias IA, Khutoryanskiy VV, Williams AC (2010) Exploring the factors affecting the solubility of chitosan in water. Macromol Chem Phys 211(4):426–433

    CAS  Google Scholar 

  • Taghizadeh SM, Davari G (2006) Preparation, characterization, and swelling behavior of N-acetylated and deacetylated chitosans. Carbohydr Polym 64:9–15

    CAS  Google Scholar 

  • Tikhonov VE, Stepnova EA, Babak VG et al (2006) Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives. Carbohydr Polym 64(1):66–72

    CAS  Google Scholar 

  • Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7):567–575

    CAS  Google Scholar 

  • Tsaih ML, Chen RH (1997) Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solutions. Int J Biol Macromol 20(3):233–240

    CAS  Google Scholar 

  • van Megen W, Underwood SM, Pusey PN (1991) Nonergodicity parameters of colloidal glasses. Phys Rev Lett 67(12):1586–1589

    Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30(2):367–382

    CAS  Google Scholar 

  • Yi H, Wu L-Q, Bentley WE et al (2005) Biofabrication with chitosan. Biomacromolecules 6(6):2881–2894

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Anton Paar for the availability of the MCR 702 Twin Drive rheometer through an instrument loan program.

Funding

Financial support for this research was provided by NSF (grant number NSF DMR 1408817).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina M. Gasbarro.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.19 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gasbarro, N.M., Solomon, M.J. Yield stress and rheology of a self-associating chitosan solution. Rheol Acta 58, 729–739 (2019). https://doi.org/10.1007/s00397-019-01173-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-019-01173-9

Keywords

  • Biopolymer
  • Flow-sensitive viscosity
  • Yield stress
  • Scattering
  • Rheology
  • Shear viscosity