Phase behavior and dynamics of Pluronic®-based additives in semidilute solutions of poly(ethersulfone) and poly(N-vinyl pyrrolidone): rheological and dynamic light scattering experiments

  • Ulrich A. HandgeEmail author
  • Oliver Gronwald
  • Martin Weber
  • Birgit Hankiewicz
  • Volker Abetz
Original Contribution


The phase behavior and dynamical properties of a pristine Pluronic® F127 and a Pluronic®-based multiblock copolymer, respectively, in semidilute solutions of poly(ethersulfone) (PESU) and poly(N-vinyl pyrrolidone) (PVP) in N-methyl-2-pyrrolidone (NMP) are investigated using shear rheological and dynamic light scattering (DLS) experiments. Pluronic® F127 is used for synthesis of the PESU-based multiblock copolymer. If the concentration of this additive exceeds a critical value, the solutions are characterized by a pronounced elasticity because of the phase behavior of the solutions, i.e., the polymer solution with three polymeric components depicts a miscibility gap which is associated with an interfacial tension in the two-phase regime. The addition of pristine Pluronic® F127 or the Pluronic®-based multiblock copolymer leads to an additional relaxation process. The zero shear rate viscosity data are qualitatively reproduced by the Palierne model. Phase separation above the critical concentration is supported by a relatively low diffusion coefficient as determined by DLS experiments.


Polymer solutions Palierne model Diffusion Phase separation Multiblock copolymers 



The authors thank Mrs. Melanie Reyes and Mr. Joachim Koll for the experimental support. The discussions with Mrs. Lara Grünig and the dynamic light scattering experiments of Mrs. Margarethe Fritz and Mrs. Nina Schober are gratefully acknowledged.

Funding information

The financial support of the Federal Ministry of Education and Research (BMBF project MABMEM, grant no. 03XP0043E) is gratefully acknowledged.


  1. Alexandridis P, Hatton TA (1994) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Asp 96:1–46CrossRefGoogle Scholar
  2. Alexandridis P, Holzwarth JF, Hatton TA (1995) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425CrossRefGoogle Scholar
  3. Alsalhy QF, Salih HA, Simone S, Zablouk M, Drioli E, Figoli A (2014) Poly(ether sulfone) (PES) hollow-fiber membranes prepared from various spinning parameters. Desalination 345:21–35CrossRefGoogle Scholar
  4. Boom RM, van den Boomgaard T, Smolders CA (1994a) Equilibrium thermodynamics of a quaternary membrane-forming system with two polymers. 1. Calculations. Macromolecules 27:2034–2040CrossRefGoogle Scholar
  5. Boom RM, Reinders HW, Rolevink HHW, van den Boomgaard T, Smolders CA (1994b) Equilibrium thermodynamics of a quaternary membrane-forming system with two polymers. 1. Experiments. Macromolecules 27:2041–2044CrossRefGoogle Scholar
  6. Borsali R, Duval M, Benmouna M (1989) Quasi-elastic light scattering from ternary mixtures of polystyrene/poly(dimethylsiloxane) solvents. Macromolecules 22:816–821CrossRefGoogle Scholar
  7. Chung T-S, Lin W-H, Vora RH (2000) The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers. J Membr Sci 167:55–66CrossRefGoogle Scholar
  8. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New YorkGoogle Scholar
  9. Feng Y, Han G, Zhang L, Chen S-B, Chung T-S, Weber M, Staudt C, Maletzko C (2016) Rheology and phase inversion behavior of polyphenylenesulfone (PPSU) and sulfonated PPSU for membrane formation. Polymer 99:72–82CrossRefGoogle Scholar
  10. Fikentscher H (1932) Systematik der Cellulosen aufgrund ihrer Viskosität. Cellulosechemie 13:58–64Google Scholar
  11. Han M-J, Nam S-T (2002) Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane. J Membr Sci 202:55–61CrossRefGoogle Scholar
  12. Ismail AF, Shilton SJ, Dunkin IR, Gallivan SL (1997) Direct measurement of rheologically induced molecular orientation in gas separation hollow fibre membranes and effects on selectivity. J Membr Sci 126:133–137CrossRefGoogle Scholar
  13. Ismail AF, Mustaffar MI, Illias RM, Abdullah MS (2006) Effect of dope extrusion rate on morphology and performance of hollow fiber membranes for ultrafiltration. Sep Purif Technol 49:10–19CrossRefGoogle Scholar
  14. Jalaal M, Cottrell G, Balmforth N, Stoeber B (2017) On the rheology of Pluronic® F127 aqueous solutions. J Rheol 61:139–146CrossRefGoogle Scholar
  15. Knappe P, Bienert R, Weidner S, Thünemann AF (2010) Characterization of poly(N-vinyl-2-pyrrolidone)s with broad size distributions. Polymer 51:1723–1727CrossRefGoogle Scholar
  16. Langan JR, Salmon GA (1987) Physical properties of N-methylpyrrolidinone as functions of temperature. J Chem Eng Data 32:420–422CrossRefGoogle Scholar
  17. Li Z, Jiang C (2001) Investigation into the rheological properties of PES/NMP/nonsolvent membrane-forming systems. J Appl Polym Sci 82:283–291CrossRefGoogle Scholar
  18. Lodge TP (1996) Dynamic light scattering from multicomponent polymer solutions. Int J Polym Anal Charact 2:323–334CrossRefGoogle Scholar
  19. Loh CH, Wang R (2013) Insight into the role of amphiphilic pluronic block copolymer as pore-forming additive in PVDF membrane formation. J Membr Sci 446:492CrossRefGoogle Scholar
  20. Loh CH, Wang R, Shi L, Fane AG (2011) Fabrication of high performance polyethersulfone UF hollow fiber membranes using amphiphilic Pluronic block copolymers as pore-forming additives. J Membr Sci 380:114–123CrossRefGoogle Scholar
  21. Münstedt H (2011) Rheological properties and molecular structure of polymer melts. Soft Matter 7:2273–2283CrossRefGoogle Scholar
  22. Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214CrossRefGoogle Scholar
  23. Palierne JF (1991) Erratum. Rheol Acta 30:497CrossRefGoogle Scholar
  24. Peng N, Chung T-S, Lai J-Y (2009) The rheology of Torlon® solutions and its role in the formation of ultra–thin defect–free Torlon® hollow fiber membranes for gas separation. J Membr Sci 326:608–617CrossRefGoogle Scholar
  25. Plisko TV, Bildyukevich AV, Karylan YA, Ovcharova AA, Volkov VV (2018) Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperature: effect of polyethylene glycol molecular weight and coagulation bath temperature. J Membr Sci 565:266–280CrossRefGoogle Scholar
  26. Ren J, Chung T-S, Li D, Wong R, Liu Y (2002) Development of asymmetric 6FDA-2,6 DAT hollow fiber membranes for CO2/CH4 separation 1. The influence of dope composition and rheology on membrane morphology and separation performance. J Membr Sci 207:227–240CrossRefGoogle Scholar
  27. Ricardo NMPS, Ricardo NMPS, Costa FMLL, Bezerra FWA, Chaibundit C, Hermida-Merino D, Greenland B, Burattini S, Hamley IW, Nixon SK, Yeates SG (2012) Effect of water-soluble polymers, polyethylene glycol and poly(vinylpyrrolidone), on the gelation of aqueous micellar solutions of Pluronic® copolymer F127. J Colloid Interface Sci 368:336–341CrossRefGoogle Scholar
  28. Sharpe ID, Ismail AF, Shilton SJ (1999) A study of extrusion shear and forced convection residence time in the spinning of polysulfone hollow fiber membranes for gas separation. Sep Purif Technol 17:101–109CrossRefGoogle Scholar
  29. Shilton SJ, Ismail AF, Gough PJ, Dunkin IR, Gallivan (1997) Molecular orientation and the performance of synthetic polymeric membranes for gas separation. Polymer 38:2215–2220CrossRefGoogle Scholar
  30. Shukla A, Graener H, Neubert RHH (2004) Observation of two diffusive relaxation modes in microemulsions by dynamic light scattering. Langmuir 20:8526–8530CrossRefGoogle Scholar
  31. Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8:409–427CrossRefGoogle Scholar
  32. Strobl GR (2007) The physics of polymers. Springer, BerlinGoogle Scholar
  33. Susanto H, Ulbricht M (2009) Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. J Membr Sci 327:125–135CrossRefGoogle Scholar
  34. Torrestiana-Sanchez B, Ortiz-Basurto RI, Fuente EB-DL (1999) Effect of nonsolvents on properties of spinning solutions and polyethersulfone hollow fiber ultrafiltration membranes. J Membr Sci 152:19–28CrossRefGoogle Scholar
  35. Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47:2217–2262CrossRefGoogle Scholar
  36. Ullsperger J, Válek R (2018) Properties of polymer solutions intended for formation of hollow fiber membranes by inversion phases process. Appl Rheol 28:65935:65935–1–65935–7Google Scholar
  37. Wang Y-Q, Sei Y-L, Ma X-L, Sun Q, Jiang Z-Y (2006) Pluronic® polymers and polyethersulfone blend membranes with improved fouling-resistant ability and ultrafiltration performance. J Membr Sci 283:440–447CrossRefGoogle Scholar
  38. Weber M, Weiß T, Maletzko C, Janssen N (2014) Improved membranes. International Patent Number WO 2014/195234, Priority date: 03.06.2013Google Scholar
  39. Yang Q, Chung T-S, Weber M (2009a) Microscopic behavior of poly(vinylpyrrolidone) hydrophilizing agents on phase inversion polyethersulfone hollow fiber membranes for hemofiltration. J Membr Sci 326:322–331CrossRefGoogle Scholar
  40. Yang Q, Chung T-S, Weber M, Wollny K (2009b) Rheological investigations of linear and hyperbranched polyethersulfone towards as-spun phase inversion memrbanes’ differences. Polymer 50:524–533CrossRefGoogle Scholar
  41. Zhao W, Su Y, Li C, Shi Q, Ning X, Jiang Z (2008) Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic® F127 as both surface modifier and pore-forming agent. J Membr Sci 318:405–412CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ulrich A. Handge
    • 1
    Email author
  • Oliver Gronwald
    • 2
  • Martin Weber
    • 2
  • Birgit Hankiewicz
    • 3
  • Volker Abetz
    • 1
    • 3
  1. 1.Helmholtz-Zentrum GeesthachtInstitute of Polymer ResearchGeesthachtGermany
  2. 2.BASF SE, Advanced Materials & SystemsPerformance Polymer Blends & Membranes RAP/OUBLudwigshafenGermany
  3. 3.Institute of Physical ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations