Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels 2: strain rate-dependent two-fluid behavior

Abstract

Complex fluids are widely used in formulated products to impart rheological properties like stability, performance, and aesthetics. Yield stress fluids are a particularly important example, enabling applications like particle suspension, surface coating, and therapeutic delivery. Recent work has shown that particle suspension in yield stress fluids can be a strong function of yielding and flow heterogeneities, especially in anisotropic fiber dispersions. This work uses a microbubble technique to study the deformation before and during yielding of microfibrous cellulose suspensions. We note significant variations in suspension performance as a result of fiber rearrangement and heterogeneities. Strong strain rate dependencies are found to vary local network yield strength, and confocal microscopy quantifies structural reinforcement and deformation rate effects. The observed behavior indicates a two-fluid interpretation may help interpret sparse network flow and suspension properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bouzid M, Del Gado E (2018) Network topology in soft gels: hardening and softening materials. Langmuir 34(3):773–781. 1710.02007

    Article  Google Scholar 

  2. Brochard F, De Gennes P (1977) Dynamical scaling for polymers in theta solvents. Macromolecules 10(5):1157–1161

    Article  Google Scholar 

  3. Buscall R, Mills P, Stewart R, Sutton D, White L, Yates G (1987) The rheology of strongly-flocculated suspensions. J Non-Newtonian Fluid Mech 24(2):183–202

    Article  Google Scholar 

  4. de Cagny HC, Vos BE, Vahabi M, Kurniawan NA, Doi M, Koenderink GH, MacKintosh FC, Bonn D (2016) Porosity governs normal stresses in polymer gels. Phys Rev Lett 117(21):217,802

    Article  Google Scholar 

  5. Denn MM, Bonn D (2011) Issues in the flow of yield-stress liquids. Rheol Acta 50(4):307–315

    Article  Google Scholar 

  6. Emady H, Caggioni M, Spicer P (2013) Colloidal microstructure effects on particle sedimentation in yield stress fluids. J Rheol 57(6):1761–1772

    Article  Google Scholar 

  7. Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9(6):1852–1863

    Article  Google Scholar 

  8. Fourmentin M, Ovarlez G, Faure P, Peter U, Lesueur D, Daviller D, Coussot P (2015) Rheology of lime paste: a comparison with cement paste. Rheol Acta 54(7):647–656

    Article  Google Scholar 

  9. Gardel M, Shin J, MacKintosh F, Mahadevan L, Matsudaira P, Weitz D (2004a) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305

    Article  Google Scholar 

  10. Gardel M, Shin J, MacKintosh F, Mahadevan L, Matsudaira P, Weitz D (2004b) Scaling of f-actin network rheology to probe single filament elasticity and dynamics. Phys Rev Lett 188(18):102

    Google Scholar 

  11. Gittes F, Schnurr B, Olmsted P, MacKintosh FC, Schmidt CF (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys Rev Lett 79(17):3286

    Article  Google Scholar 

  12. Hough L, Islam M, Hammouda B, Yodh A, Heiney P (2006) Structure of semidilute single-wall carbon nanotube suspensions and gels. Nano Lett 6(2):313–317

    Article  Google Scholar 

  13. Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocessing Biotechniques 2014:1–10

    Google Scholar 

  14. Levine AJ, Lubensky T (2001) Response function of a sphere in a viscoelastic two-fluid medium. Phys Rev E 63(4):041,510

    Article  Google Scholar 

  15. Lopez-Sanchez P, Rincon M, Wang D, Brulhart S, Stokes J, Gidley M (2014) Micromechanics and poroelasticity of hydrated cellulose networks. Biomacromolecules 15(6):2274–2284

    Article  Google Scholar 

  16. Manley S, Skotheim J, Mahadevan L, Weitz D (2005) Gravitational collapse of colloidal gels. Phys Rev Lett 94(21):1–4

    Article  Google Scholar 

  17. Meng F, Terentjev EM (2017) Theory of semiflexible filaments and networks. Polymers 9(2):52

    Article  Google Scholar 

  18. Møller PC, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283

    Article  Google Scholar 

  19. Okiyama A, Motoki M, Yamanaka S (1993) Bacterial cellulose iv. application to processed foods. Food Hydrocolloids 6(6):503– 511

    Article  Google Scholar 

  20. Olsen BD, Kornfield JA, Tirrell DA (2010) Yielding behavior in injectable hydrogels from telechelic proteins. Macromolecules 43(21):9094–9099

    Article  Google Scholar 

  21. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  22. Pantina JP, Furst EM (2005) Elasticity and critical bending moment of model colloidal aggregates. Phys Rev Lett 94(13):138,301

    Article  Google Scholar 

  23. Quinto-Su P, Huang X, Gonzalez-Avila S, Wu T, Ohl C (2010) Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys Rev Lett 104(1):014,501

    Article  Google Scholar 

  24. Ronceray P, Broedersz CP, Lenz M (2016) Fiber networks amplify active stress. 201514208. Proc Natl Acad Sci 113(11):2827–2832

    Article  Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  Google Scholar 

  26. Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6(7):1391–1400

    Article  Google Scholar 

  27. Song J, Caggioni M, Squires TM, Gilchrist J, Prescott SW, Spicer PT (2019) Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels 1. Bubble rheometer studies. Rheol Acta. https://doi.org/10.1007/s00397-019-01140-4

  28. Sprakel J, Lindström SB, Kodger TE, Weitz DA (2011) Stress enhancement in the delayed yielding of colloidal gels. Phys Rev Lett 106(24):248,303

    Article  Google Scholar 

  29. Vahabi M, Vos BE, De Cagny HC, Bonn D, Koenderink GH, Mackintosh FC (2018) Normal stresses in semiflexible polymer hydrogels. Phys Rev E 97(3):32418. 1712.02733

    Article  Google Scholar 

  30. Veen SJ, Kuijk A, Versluis P, Husken H, Velikov KP (2014) Phase transitions in cellulose microfibril dispersions by high-energy mechanical deagglomeration. Langmuir 30(44):13362–13368

    Article  Google Scholar 

  31. Wilkins GM, Spicer PT, Solomon MJ (2009) Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses. Langmuir 25(16):8951–8959

    Article  Google Scholar 

  32. Xu X, Safran S A (2017) Compressive elasticity of polydisperse biopolymer gels. Phys Rev E 95(5):052,415

    Article  Google Scholar 

  33. Young PM, Traini D, Ong HX, Granieri A, Zhu B, Scalia S, Song J, Spicer PT (2017) Novel nano-cellulose excipient for generating non-Newtonian droplets for targeted nasal drug delivery. Drug Dev Ind Pharm 43(10):1729–1733

    Article  Google Scholar 

Download references

Acknowledgements

We thank the BioMedical Imaging Facility (BMIF) and the Mark Wainwright Analytical Centre (MWAC) at UNSW for confocal microscopy imaging and support.

Funding

We received financial support from the Procter & Gamble Company and the UNSW Major Research Equipment Infrastructure Initiative (MREII 2014). This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Spicer.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, J., Caggioni, M., Squires, T.M. et al. Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels 2: strain rate-dependent two-fluid behavior. Rheol Acta 58, 231–239 (2019). https://doi.org/10.1007/s00397-019-01141-3

Download citation

Keywords

  • Gels
  • Yielding
  • Microstructure rearrangement
  • Two-fluid model
  • Microfibrous cellulose
  • Strain rate dependent