Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels 1. Bubble rheometer studies

Abstract

Microstructural effects on suspension and yielding are studied in aqueous dispersions of bacterial cellulose fibers using a small suspended air bubble as a sensitive probe particle. An external pressure field is used to control the applied stress and characterize very early stages of fluid yielding, as well as more developed flow. The bubble allows sensitive measurement of small yield stress values but also indicates a discrepancy between bulk and microscale yield stress values. Image analysis and flow visualization provide a measurement of the deformation, yielding, and flow of low-concentration microfiber dispersions at length scales comparable to that of the fibers. Tracking of trapped tracer particles indicates local restructuring occurs in fiber networks, driving heterogeneous yielding and flow. The observed heterogeneity effects decreased as fiber concentration increased, reducing network restructuring. The size of the yielded region in the gels varied inversely with fiber concentration, but did not fully account for the bulk-microscale discrepancies, indicating the gels are restructuring, responsive fluids. We suggest a two-fluid description of sparse fiber gels is necessary to fully account for the heterogeneity and suspension performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Atapattu D, Chhabra R, Uhlherr P (1995) Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag. J Non-Newt Fluid Mech 59(2):245–265

    CAS  Article  Google Scholar 

  2. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    Article  CAS  Google Scholar 

  3. Balberg I, Binenbaum N, Wagner N (1984) Percolation thresholds in the three-dimensional sticks system. Phys Rev Lett 52(17):1465

    Article  Google Scholar 

  4. Beaulne M, Mitsoulis E (1997) Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids. J Non-Newt Fluid Mech 72(1):55–71

    CAS  Article  Google Scholar 

  5. Bennington C, Kerekes R, Grace J (1990) The yield stress of fibre suspensions. Canad J Chem Eng 68 (5):748–757

    CAS  Article  Google Scholar 

  6. Beris A, Tsamopoulos J, Armstrong R, Brown R (1985) Creeping motion of a sphere through a Bingham plastic. J Fluid Mech 158:219–244

    CAS  Article  Google Scholar 

  7. Beuguel Q, Tavares JR, Carreau PJ, Heuzey MC (2018) Rheological behavior of cellulose nanocrystal suspensions in polyethylene glycol. J Rheol 62(2):607–618

    CAS  Article  Google Scholar 

  8. Bhole MR, Hui LK, Gomez C, Bennington CP, Dumont GA (2011) The effect of off-wall clearance of a side-entering impeller on the mixing of pulp suspensions in a cylindrical stock chest. Canad J Chem Eng 89 (5):985–995

    CAS  Article  Google Scholar 

  9. Brochard F, De Gennes P (1977) Dynamical scaling for polymers in theta solvents. Macromolecules 10 (5):1157–1161

    CAS  Article  Google Scholar 

  10. Broedersz C, Sheinman M, MacKintosh F (2012) Filament-length-controlled elasticity in 3D fiber networks. Phys Rev Lett 108(7):078,102

    CAS  Article  Google Scholar 

  11. Buscall R (1990) The sedimentation of concentrated colloidal suspensions. Colloids Surf 43(1):33–53

    CAS  Article  Google Scholar 

  12. Cagny HCGD, Vos BE, Vahabi M, Kurniawan NA, Doi M, Koenderink GH, Mackintosh FC, Bonn D (2016) Porosity governs normal stresses in polymer gels. Phys Rev Lett 117(217):802. https://doi.org/10.1103/PhysRevLett.117.217802

    Google Scholar 

  13. Chan HK, Mohraz A (2012) Two-step yielding and directional strain-induced strengthening in dilute colloidal gels. Phys Rev E 85(4):041,403

    Article  CAS  Google Scholar 

  14. Chan HK, Mohraz A (2013) A simple shear cell for the direct visualization of step-stress deformation in soft materials. Rheol Acta 52(5):383–394

    CAS  Article  Google Scholar 

  15. Colombo J, Del Gado E (2014) Stress localization, stiffening and yielding in a model colloidal gel. J Rheol 1089:1089–1116. 1406.4187

    Article  CAS  Google Scholar 

  16. Derakhshandeh B, Petekidis G, Sabet SS, Hamad WY, Hatzikiriakos SG (2013) Ageing, yielding, and rheology of nanocrystalline cellulose suspensions. J Rheo 57(1):131–148

    CAS  Article  Google Scholar 

  17. Dimitriou CJ, McKinley GH (2014) A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid. Soft Matter 10(35):6619–6644

    CAS  Article  Google Scholar 

  18. Dubash N, Frigaard I (2007) Propagation and stopping of air bubbles in Carbopol solutions. J Non-Newt Fluid Mech 142(1):123–134

    CAS  Article  Google Scholar 

  19. Egres Jr, R, Decker M, Halbach C, Lee Y, Kirkwood J, Kirwood K, Wagner N, Wetzel E (2004) Stab resistance of shear thickening fluid (STF)-Kevlar composites for body armor applications. Tech. rep., DTIC Document

  20. Emady H, Caggioni M, Spicer P (2013) Colloidal microstructure effects on particle sedimentation in yield stress fluids. J Rheo 57(6):1761–1772

    CAS  Article  Google Scholar 

  21. Feng J, Levine H, Mao X, Sander LM (2016) Nonlinear elasticity of disordered fiber networks. Soft matter 12(5):1419–1424

    CAS  Article  Google Scholar 

  22. Fourmentin M, Ovarlez G, Faure P, Peter U, Lesueur D, Daviller D, Coussot P (2015) Rheology of lime paste - a comparison with cement paste. Rheol Acta 54(7):647–656

    CAS  Article  Google Scholar 

  23. Gardel M, Shin J, MacKintosh F, Mahadevan L, Matsudaira P, Weitz D (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305

    CAS  Article  Google Scholar 

  24. Gheissary G, Van den Brule B (1996) Unexpected phenomena observed in particle settling in non-Newtonian media. J Non-Newt Fluid Mech 67:1–18

    CAS  Article  Google Scholar 

  25. Gueslin B, Talini L, Peysson Y (2009) Sphere settling in an aging yield stress fluid: link between the induced flows and the rheological behavior. Rheo Acta 48(9):961–970

    CAS  Article  Google Scholar 

  26. Gurmessa B, Fitzpatrick R, Falzone TT, Robertson-Anderson RM (2016) Entanglement density tunes microscale nonlinear response of entangled actin. Macromolecules 49(10):3948–3955

    CAS  Article  Google Scholar 

  27. Hariharaputhiran M, Subramanian RS, Campbell GA, Chhabra RP (1998) The settling of spheres in a viscoplastic fluid. J Non-Newt Fluid Mech 79(1):87–97

    CAS  Article  Google Scholar 

  28. Holenberg Y, Lavrenteva OM, Shavit U, Nir A (2012) Particle tracking velocimetry and particle image velocimetry study of the slow motion of rough and smooth solid spheres in a yield-stress fluid. Phys Rev E 86 (6):066,301

    Article  CAS  Google Scholar 

  29. Hough L, Islam M, Janmey P, Yodh A (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93(16):168,102

    CAS  Article  Google Scholar 

  30. Hsiao LC, Newman RS, Glotzer SC, Solomon MJ (2012) Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proc Natl Acad Sci 109(40):16,029–16,034

    CAS  Article  Google Scholar 

  31. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose - a masterpiece of nature’s arts. J Mat Sci 35(2):261–270

    CAS  Article  Google Scholar 

  32. Jamburidze A, Corato MD, Huerre A, Garbin V (2017) High-frequency linear rheology of hydrogels probed by ultrasound-driven microbubble dynamics. Soft Matter 13:3946–3953. https://doi.org/10.1039/C6SM02810A

    CAS  Article  Google Scholar 

  33. Janmey PA, Hvidt S, Lamb J, Stossel TP (1990) Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345(6270):89–92

    CAS  Article  Google Scholar 

  34. Janmey PA, Hvidt S, Käs J, Lerche D, Maggs A, Sackmann E, Schliwa M, Stossel TP (1994) The mechanical properties of actin gels. elastic modulus and filament motions. J Bio Chem 269(51):32,503–32,513

    CAS  Google Scholar 

  35. Kim J, Merger D, Wilhelm M, Helgeson ME (2014) Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. J Rheol 58(5):1359–1390

    CAS  Article  Google Scholar 

  36. de Kort D, Veen SJ, van As H, Bonn D, Velikov KP (2016) Yielding and flow of cellulose microfibril dispersions in the presence of charged polymer. Soft Matter 12:1–10

    Article  Google Scholar 

  37. Kuijk A, Koppert R, Versluis P, van Dalen G, Remijn C, Hazekamp J, Nijsse J, Velikov KP (2013) Dispersions of attractive semiflexible fiberlike colloidal particles from bacterial cellulose microfibrils. Langmuir 29 (47):14,356–14,360

    CAS  Article  Google Scholar 

  38. Kyrylyuk AV, van der Schoot P (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc Nat Acad Sci 105(24):8221–8226

    CAS  Article  Google Scholar 

  39. Laxton PB, Berg JC (2005) Gel trapping of dense colloids. J Colloid Int Sci 285(1):152–157

    CAS  Article  Google Scholar 

  40. Lee KY, Quero F, Blaker JJ, Hill CA, Eichhorn SJ, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18(3):595–605

    CAS  Article  Google Scholar 

  41. Lee MH, Furst EM (2008) Response of a colloidal gel to a microscopic oscillatory strain. Phys Rev E 77 (4):041,408

    Article  CAS  Google Scholar 

  42. Levine AJ, Lubensky T (2001) Response function of a sphere in a viscoelastic two-fluid medium. Physical Review E 63(4):041,510

    CAS  Article  Google Scholar 

  43. Lindström SB, Vader DA, Kulachenko A, Weitz DA (2010) Biopolymer network geometries: characterization, regeneration, and elastic properties. Phys Rev E 82(5):051,905

    Article  CAS  Google Scholar 

  44. Lopez-Sanchez P, Rincon M, Wang D, Brulhart S, Stokes J, Gidley M (2014) Micromechanics and poroelasticity of hydrated cellulose networks. Biomacromolecules 15(6):2274–2284

    CAS  Article  Google Scholar 

  45. MacKintosh F, Käs J, Janmey P (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75(24):4425

    CAS  Article  Google Scholar 

  46. Martoïa F, Dumont P, Orgéas L, Belgacem M, Putaux JL (2016) Micro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow. Soft matter 12(6):1721–1735

    Article  CAS  Google Scholar 

  47. Mason T, Bibette J, Weitz D (1996) Yielding and flow of monodisperse emulsions. J Colloid Int Sci 179(2):439–448

    CAS  Article  Google Scholar 

  48. Mirzaagha S, Pasquino R, Iuliano E, D’Avino G, Zonfrilli F, Guida V, Grizzuti N (2017) The rising motion of spheres in structured fluids with yield stress. Phys. Fluids 29(9):093,101–9

    Article  CAS  Google Scholar 

  49. Mitsoulis E (2007) Flows of viscoplastic materials: models and computations. Rheo Rev 2007:135–178

    Google Scholar 

  50. Mohraz A, Solomon MJ (2005) Direct visualization of colloidal rod assembly by confocal microscopy. Langmuir 21(12):5298–5306

    CAS  Article  Google Scholar 

  51. Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava MJ (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21 (3):1305–1312

    CAS  Article  Google Scholar 

  52. Moller P, Fall A, Chikkadi V, Derks D, Bonn D (2009) An attempt to categorize yield stress fluid behaviour. Phil Trans R Soc A 367(1909):5139–5155

    Article  Google Scholar 

  53. Mougin N, Magnin A, Piau JM (2012) The significant influence of internal stresses on the dynamics of bubbles in a yield stress fluid. J Non-Newt Fluid Mech 171:42–55

    Article  CAS  Google Scholar 

  54. Nakagaito A, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl. Phys. A 80(1):93–97

    CAS  Article  Google Scholar 

  55. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941

    Article  CAS  Google Scholar 

  56. Pantina JP, Furst EM (2005) Elasticity and critical bending moment of model colloidal aggregates. Phys Rev Lett 94(13):138,301

    Article  CAS  Google Scholar 

  57. Pickrahn K, Rajaram B, Mohraz A (2009) Relationship between microstructure, dynamics, and rheology in polymer-bridging colloidal gels. Langmuir 26(4):2392–2400

    Article  CAS  Google Scholar 

  58. Quinto-Su P, Huang X, Gonzalez-Avila S, Wu T, Ohl C (2010) Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys Rev Lett 104(1):014,501

    CAS  Article  Google Scholar 

  59. Rajaram B, Mohraz A (2010) Microstructural response of dilute colloidal gels to nonlinear shear deformation. Soft Matter 6(10):2246–2259

    CAS  Article  Google Scholar 

  60. Rich JP, Lammerding J, McKinley GH, Doyle PS (2011) Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers. Soft Matter 7(21):9933–9943

    CAS  Article  Google Scholar 

  61. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    CAS  Article  Google Scholar 

  62. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Meth 9(7):671–675

    CAS  Article  Google Scholar 

  63. Sharma A, Licup A, Rens R, Sheinman M, Jansen K, Koenderink G, MacKintosh F (2016) Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat Phys 12:584—587

    Article  CAS  Google Scholar 

  64. Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180

    CAS  Article  Google Scholar 

  65. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494

    Article  CAS  Google Scholar 

  66. Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6(7):1391–1400

    CAS  Article  Google Scholar 

  67. Sonntag R, Russel W (1987) Elastic properties of flocculated networks. J Colloid Int Sci 116(2):485–489

    CAS  Article  Google Scholar 

  68. Sprakel J, Lindström SB, Kodger TE, Weitz DA (2011) Stress enhancement in the delayed yielding of colloidal gels. Phys Rev Lett 106(24):248,303

    Article  CAS  Google Scholar 

  69. Squires TM (2008) Nonlinear microrheology: bulk stresses versus direct interactions. Langmuir 24(4):1147–1159

    CAS  Article  Google Scholar 

  70. Tharmann R, Claessens M, Bausch A (2006) Micro-and macrorheological properties of actin networks effectively cross-linked by depletion forces. Biophys J 90(7):2622–2627

    CAS  Article  Google Scholar 

  71. Vader D, Kabla A, Weitz D, Mahadevan L (2009) Strain-induced alignment in collagen gels. PloS one 4(6):e5902

    Article  Google Scholar 

  72. Veen SJ, Kuijk A, Versluis P, Husken H, Velikov KP (2014) Phase transitions in cellulose microfibril dispersions by high-energy mechanical deagglomeration. Langmuir 30(44):13,362–13,368

    CAS  Article  Google Scholar 

  73. Veen SJ, Versluis P, Kuijk A, Velikov KP (2015) Microstructure and rheology of microfibril–polymer networks. Soft Matter 11(46):8907–8912

    CAS  Article  Google Scholar 

  74. Wierenga A, Philipse AP, Lekkerkerker HN, Boger DV (1998) Aqueous dispersions of colloidal boehmite: structure, dynamics, and yield stress of rod gels. Langmuir 14(1):55–65

    CAS  Article  Google Scholar 

  75. Wu H, Morbidelli M (2001) A model relating structure of colloidal gels to their elastic properties. Langmuir 17(4):1030–1036

    CAS  Article  Google Scholar 

  76. Wu J, Zheng Y, Yang Z, Cui Q, Wang Q, Gao S, Ding X (2012) Chemical modifications and characteristic changes in bacterial cellulose treated with different media. J Polymer Res 19(9):1–8

    Article  CAS  Google Scholar 

  77. Yanez JA, Shikata T, Lange FF, Pearson DS (1996) Shear modulus and yield stress measurements of attractive alumina particle networks in aqueous slurries. J Am Ceram Soc 79(11):2917–2917

    CAS  Article  Google Scholar 

  78. žagar G, Onck PR, van der Giessen E (2015) Two fundamental mechanisms govern the stiffening of cross-linked networks. Biophys J 108(6):1470–1479

    Article  CAS  Google Scholar 

  79. Zhang X, Fadoul O, Lorenceau E, Coussot P (2018) Yielding and flow of soft-jammed systems in elongation. Phys Rev Lett 120(4):048,001

    CAS  Article  Google Scholar 

Download references

Funding

We gratefully acknowledge financial support from the Procter & Gamble Company and the UNSW Major Research Equipment Infrastructure Initiative (MREII 2014). This research was supported in part by the National Science Foundation under Grant No. NSF PHY17-48958.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Spicer.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, J., Caggioni, M., Squires, T.M. et al. Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels 1. Bubble rheometer studies. Rheol Acta 58, 217–229 (2019). https://doi.org/10.1007/s00397-019-01140-4

Download citation

Keywords

  • Yield stress
  • Microstructure
  • Suspension
  • Heterogeneity
  • Gels