Advertisement

Rheologica Acta

, Volume 58, Issue 5, pp 217–229 | Cite as

Heterogeneity, suspension, and yielding in sparse microfibrous cellulose gels 1. Bubble rheometer studies

  • Jie Song
  • Marco Caggioni
  • Todd M. Squires
  • James F. Gilchrist
  • Stuart W. Prescott
  • Patrick T. SpicerEmail author
Original Contribution

Abstract

Microstructural effects on suspension and yielding are studied in aqueous dispersions of bacterial cellulose fibers using a small suspended air bubble as a sensitive probe particle. An external pressure field is used to control the applied stress and characterize very early stages of fluid yielding, as well as more developed flow. The bubble allows sensitive measurement of small yield stress values but also indicates a discrepancy between bulk and microscale yield stress values. Image analysis and flow visualization provide a measurement of the deformation, yielding, and flow of low-concentration microfiber dispersions at length scales comparable to that of the fibers. Tracking of trapped tracer particles indicates local restructuring occurs in fiber networks, driving heterogeneous yielding and flow. The observed heterogeneity effects decreased as fiber concentration increased, reducing network restructuring. The size of the yielded region in the gels varied inversely with fiber concentration, but did not fully account for the bulk-microscale discrepancies, indicating the gels are restructuring, responsive fluids. We suggest a two-fluid description of sparse fiber gels is necessary to fully account for the heterogeneity and suspension performance.

Keywords

Yield stress Microstructure Suspension Heterogeneity Gels 

Notes

Funding information

We gratefully acknowledge financial support from the Procter & Gamble Company and the UNSW Major Research Equipment Infrastructure Initiative (MREII 2014). This research was supported in part by the National Science Foundation under Grant No. NSF PHY17-48958.

Supplementary material

397_2019_1140_MOESM1_ESM.pdf (402 kb)
(PDF 401 KB)
397_2019_1140_MOESM2_ESM.avi (3.2 mb)
(AVI 3.24 MB)
397_2019_1140_MOESM3_ESM.avi (2.1 mb)
(AVI 2.14 MB)
397_2019_1140_MOESM4_ESM.avi (2.7 mb)
(AVI 2.71 MB)

References

  1. Atapattu D, Chhabra R, Uhlherr P (1995) Creeping sphere motion in Herschel-Bulkley fluids: flow field and drag. J Non-Newt Fluid Mech 59(2):245–265CrossRefGoogle Scholar
  2. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRefGoogle Scholar
  3. Balberg I, Binenbaum N, Wagner N (1984) Percolation thresholds in the three-dimensional sticks system. Phys Rev Lett 52(17):1465CrossRefGoogle Scholar
  4. Beaulne M, Mitsoulis E (1997) Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids. J Non-Newt Fluid Mech 72(1):55–71CrossRefGoogle Scholar
  5. Bennington C, Kerekes R, Grace J (1990) The yield stress of fibre suspensions. Canad J Chem Eng 68 (5):748–757CrossRefGoogle Scholar
  6. Beris A, Tsamopoulos J, Armstrong R, Brown R (1985) Creeping motion of a sphere through a Bingham plastic. J Fluid Mech 158:219–244CrossRefGoogle Scholar
  7. Beuguel Q, Tavares JR, Carreau PJ, Heuzey MC (2018) Rheological behavior of cellulose nanocrystal suspensions in polyethylene glycol. J Rheol 62(2):607–618CrossRefGoogle Scholar
  8. Bhole MR, Hui LK, Gomez C, Bennington CP, Dumont GA (2011) The effect of off-wall clearance of a side-entering impeller on the mixing of pulp suspensions in a cylindrical stock chest. Canad J Chem Eng 89 (5):985–995CrossRefGoogle Scholar
  9. Brochard F, De Gennes P (1977) Dynamical scaling for polymers in theta solvents. Macromolecules 10 (5):1157–1161CrossRefGoogle Scholar
  10. Broedersz C, Sheinman M, MacKintosh F (2012) Filament-length-controlled elasticity in 3D fiber networks. Phys Rev Lett 108(7):078,102CrossRefGoogle Scholar
  11. Buscall R (1990) The sedimentation of concentrated colloidal suspensions. Colloids Surf 43(1):33–53CrossRefGoogle Scholar
  12. Cagny HCGD, Vos BE, Vahabi M, Kurniawan NA, Doi M, Koenderink GH, Mackintosh FC, Bonn D (2016) Porosity governs normal stresses in polymer gels. Phys Rev Lett 117(217):802.  https://doi.org/10.1103/PhysRevLett.117.217802 Google Scholar
  13. Chan HK, Mohraz A (2012) Two-step yielding and directional strain-induced strengthening in dilute colloidal gels. Phys Rev E 85(4):041,403CrossRefGoogle Scholar
  14. Chan HK, Mohraz A (2013) A simple shear cell for the direct visualization of step-stress deformation in soft materials. Rheol Acta 52(5):383–394CrossRefGoogle Scholar
  15. Colombo J, Del Gado E (2014) Stress localization, stiffening and yielding in a model colloidal gel. J Rheol 1089:1089–1116. 1406.4187CrossRefGoogle Scholar
  16. Derakhshandeh B, Petekidis G, Sabet SS, Hamad WY, Hatzikiriakos SG (2013) Ageing, yielding, and rheology of nanocrystalline cellulose suspensions. J Rheo 57(1):131–148CrossRefGoogle Scholar
  17. Dimitriou CJ, McKinley GH (2014) A comprehensive constitutive law for waxy crude oil: a thixotropic yield stress fluid. Soft Matter 10(35):6619–6644CrossRefGoogle Scholar
  18. Dubash N, Frigaard I (2007) Propagation and stopping of air bubbles in Carbopol solutions. J Non-Newt Fluid Mech 142(1):123–134CrossRefGoogle Scholar
  19. Egres Jr, R, Decker M, Halbach C, Lee Y, Kirkwood J, Kirwood K, Wagner N, Wetzel E (2004) Stab resistance of shear thickening fluid (STF)-Kevlar composites for body armor applications. Tech. rep., DTIC DocumentGoogle Scholar
  20. Emady H, Caggioni M, Spicer P (2013) Colloidal microstructure effects on particle sedimentation in yield stress fluids. J Rheo 57(6):1761–1772CrossRefGoogle Scholar
  21. Feng J, Levine H, Mao X, Sander LM (2016) Nonlinear elasticity of disordered fiber networks. Soft matter 12(5):1419–1424CrossRefGoogle Scholar
  22. Fourmentin M, Ovarlez G, Faure P, Peter U, Lesueur D, Daviller D, Coussot P (2015) Rheology of lime paste - a comparison with cement paste. Rheol Acta 54(7):647–656CrossRefGoogle Scholar
  23. Gardel M, Shin J, MacKintosh F, Mahadevan L, Matsudaira P, Weitz D (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304(5675):1301–1305CrossRefGoogle Scholar
  24. Gheissary G, Van den Brule B (1996) Unexpected phenomena observed in particle settling in non-Newtonian media. J Non-Newt Fluid Mech 67:1–18CrossRefGoogle Scholar
  25. Gueslin B, Talini L, Peysson Y (2009) Sphere settling in an aging yield stress fluid: link between the induced flows and the rheological behavior. Rheo Acta 48(9):961–970CrossRefGoogle Scholar
  26. Gurmessa B, Fitzpatrick R, Falzone TT, Robertson-Anderson RM (2016) Entanglement density tunes microscale nonlinear response of entangled actin. Macromolecules 49(10):3948–3955CrossRefGoogle Scholar
  27. Hariharaputhiran M, Subramanian RS, Campbell GA, Chhabra RP (1998) The settling of spheres in a viscoplastic fluid. J Non-Newt Fluid Mech 79(1):87–97CrossRefGoogle Scholar
  28. Holenberg Y, Lavrenteva OM, Shavit U, Nir A (2012) Particle tracking velocimetry and particle image velocimetry study of the slow motion of rough and smooth solid spheres in a yield-stress fluid. Phys Rev E 86 (6):066,301CrossRefGoogle Scholar
  29. Hough L, Islam M, Janmey P, Yodh A (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93(16):168,102CrossRefGoogle Scholar
  30. Hsiao LC, Newman RS, Glotzer SC, Solomon MJ (2012) Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels. Proc Natl Acad Sci 109(40):16,029–16,034CrossRefGoogle Scholar
  31. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose - a masterpiece of nature’s arts. J Mat Sci 35(2):261–270CrossRefGoogle Scholar
  32. Jamburidze A, Corato MD, Huerre A, Garbin V (2017) High-frequency linear rheology of hydrogels probed by ultrasound-driven microbubble dynamics. Soft Matter 13:3946–3953.  https://doi.org/10.1039/C6SM02810A CrossRefGoogle Scholar
  33. Janmey PA, Hvidt S, Lamb J, Stossel TP (1990) Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature 345(6270):89–92CrossRefGoogle Scholar
  34. Janmey PA, Hvidt S, Käs J, Lerche D, Maggs A, Sackmann E, Schliwa M, Stossel TP (1994) The mechanical properties of actin gels. elastic modulus and filament motions. J Bio Chem 269(51):32,503–32,513Google Scholar
  35. Kim J, Merger D, Wilhelm M, Helgeson ME (2014) Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. J Rheol 58(5):1359–1390CrossRefGoogle Scholar
  36. de Kort D, Veen SJ, van As H, Bonn D, Velikov KP (2016) Yielding and flow of cellulose microfibril dispersions in the presence of charged polymer. Soft Matter 12:1–10CrossRefGoogle Scholar
  37. Kuijk A, Koppert R, Versluis P, van Dalen G, Remijn C, Hazekamp J, Nijsse J, Velikov KP (2013) Dispersions of attractive semiflexible fiberlike colloidal particles from bacterial cellulose microfibrils. Langmuir 29 (47):14,356–14,360CrossRefGoogle Scholar
  38. Kyrylyuk AV, van der Schoot P (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc Nat Acad Sci 105(24):8221–8226CrossRefGoogle Scholar
  39. Laxton PB, Berg JC (2005) Gel trapping of dense colloids. J Colloid Int Sci 285(1):152–157CrossRefGoogle Scholar
  40. Lee KY, Quero F, Blaker JJ, Hill CA, Eichhorn SJ, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18(3):595–605CrossRefGoogle Scholar
  41. Lee MH, Furst EM (2008) Response of a colloidal gel to a microscopic oscillatory strain. Phys Rev E 77 (4):041,408CrossRefGoogle Scholar
  42. Levine AJ, Lubensky T (2001) Response function of a sphere in a viscoelastic two-fluid medium. Physical Review E 63(4):041,510CrossRefGoogle Scholar
  43. Lindström SB, Vader DA, Kulachenko A, Weitz DA (2010) Biopolymer network geometries: characterization, regeneration, and elastic properties. Phys Rev E 82(5):051,905CrossRefGoogle Scholar
  44. Lopez-Sanchez P, Rincon M, Wang D, Brulhart S, Stokes J, Gidley M (2014) Micromechanics and poroelasticity of hydrated cellulose networks. Biomacromolecules 15(6):2274–2284CrossRefGoogle Scholar
  45. MacKintosh F, Käs J, Janmey P (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75(24):4425CrossRefGoogle Scholar
  46. Martoïa F, Dumont P, Orgéas L, Belgacem M, Putaux JL (2016) Micro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow. Soft matter 12(6):1721–1735CrossRefGoogle Scholar
  47. Mason T, Bibette J, Weitz D (1996) Yielding and flow of monodisperse emulsions. J Colloid Int Sci 179(2):439–448CrossRefGoogle Scholar
  48. Mirzaagha S, Pasquino R, Iuliano E, D’Avino G, Zonfrilli F, Guida V, Grizzuti N (2017) The rising motion of spheres in structured fluids with yield stress. Phys. Fluids 29(9):093,101–9CrossRefGoogle Scholar
  49. Mitsoulis E (2007) Flows of viscoplastic materials: models and computations. Rheo Rev 2007:135–178Google Scholar
  50. Mohraz A, Solomon MJ (2005) Direct visualization of colloidal rod assembly by confocal microscopy. Langmuir 21(12):5298–5306CrossRefGoogle Scholar
  51. Mohtaschemi M, Dimic-Misic K, Puisto A, Korhonen M, Maloney T, Paltakari J, Alava MJ (2014) Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer. Cellulose 21 (3):1305–1312CrossRefGoogle Scholar
  52. Moller P, Fall A, Chikkadi V, Derks D, Bonn D (2009) An attempt to categorize yield stress fluid behaviour. Phil Trans R Soc A 367(1909):5139–5155CrossRefGoogle Scholar
  53. Mougin N, Magnin A, Piau JM (2012) The significant influence of internal stresses on the dynamics of bubbles in a yield stress fluid. J Non-Newt Fluid Mech 171:42–55CrossRefGoogle Scholar
  54. Nakagaito A, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl. Phys. A 80(1):93–97CrossRefGoogle Scholar
  55. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941CrossRefGoogle Scholar
  56. Pantina JP, Furst EM (2005) Elasticity and critical bending moment of model colloidal aggregates. Phys Rev Lett 94(13):138,301CrossRefGoogle Scholar
  57. Pickrahn K, Rajaram B, Mohraz A (2009) Relationship between microstructure, dynamics, and rheology in polymer-bridging colloidal gels. Langmuir 26(4):2392–2400CrossRefGoogle Scholar
  58. Quinto-Su P, Huang X, Gonzalez-Avila S, Wu T, Ohl C (2010) Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys Rev Lett 104(1):014,501CrossRefGoogle Scholar
  59. Rajaram B, Mohraz A (2010) Microstructural response of dilute colloidal gels to nonlinear shear deformation. Soft Matter 6(10):2246–2259CrossRefGoogle Scholar
  60. Rich JP, Lammerding J, McKinley GH, Doyle PS (2011) Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers. Soft Matter 7(21):9933–9943CrossRefGoogle Scholar
  61. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491CrossRefGoogle Scholar
  62. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Meth 9(7):671–675CrossRefGoogle Scholar
  63. Sharma A, Licup A, Rens R, Sheinman M, Jansen K, Koenderink G, MacKintosh F (2016) Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat Phys 12:584—587CrossRefGoogle Scholar
  64. Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180CrossRefGoogle Scholar
  65. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  66. Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6(7):1391–1400CrossRefGoogle Scholar
  67. Sonntag R, Russel W (1987) Elastic properties of flocculated networks. J Colloid Int Sci 116(2):485–489CrossRefGoogle Scholar
  68. Sprakel J, Lindström SB, Kodger TE, Weitz DA (2011) Stress enhancement in the delayed yielding of colloidal gels. Phys Rev Lett 106(24):248,303CrossRefGoogle Scholar
  69. Squires TM (2008) Nonlinear microrheology: bulk stresses versus direct interactions. Langmuir 24(4):1147–1159CrossRefGoogle Scholar
  70. Tharmann R, Claessens M, Bausch A (2006) Micro-and macrorheological properties of actin networks effectively cross-linked by depletion forces. Biophys J 90(7):2622–2627CrossRefGoogle Scholar
  71. Vader D, Kabla A, Weitz D, Mahadevan L (2009) Strain-induced alignment in collagen gels. PloS one 4(6):e5902CrossRefGoogle Scholar
  72. Veen SJ, Kuijk A, Versluis P, Husken H, Velikov KP (2014) Phase transitions in cellulose microfibril dispersions by high-energy mechanical deagglomeration. Langmuir 30(44):13,362–13,368CrossRefGoogle Scholar
  73. Veen SJ, Versluis P, Kuijk A, Velikov KP (2015) Microstructure and rheology of microfibril–polymer networks. Soft Matter 11(46):8907–8912CrossRefGoogle Scholar
  74. Wierenga A, Philipse AP, Lekkerkerker HN, Boger DV (1998) Aqueous dispersions of colloidal boehmite: structure, dynamics, and yield stress of rod gels. Langmuir 14(1):55–65CrossRefGoogle Scholar
  75. Wu H, Morbidelli M (2001) A model relating structure of colloidal gels to their elastic properties. Langmuir 17(4):1030–1036CrossRefGoogle Scholar
  76. Wu J, Zheng Y, Yang Z, Cui Q, Wang Q, Gao S, Ding X (2012) Chemical modifications and characteristic changes in bacterial cellulose treated with different media. J Polymer Res 19(9):1–8CrossRefGoogle Scholar
  77. Yanez JA, Shikata T, Lange FF, Pearson DS (1996) Shear modulus and yield stress measurements of attractive alumina particle networks in aqueous slurries. J Am Ceram Soc 79(11):2917–2917CrossRefGoogle Scholar
  78. žagar G, Onck PR, van der Giessen E (2015) Two fundamental mechanisms govern the stiffening of cross-linked networks. Biophys J 108(6):1470–1479CrossRefGoogle Scholar
  79. Zhang X, Fadoul O, Lorenceau E, Coussot P (2018) Yielding and flow of soft-jammed systems in elongation. Phys Rev Lett 120(4):048,001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jie Song
    • 1
  • Marco Caggioni
    • 2
  • Todd M. Squires
    • 3
  • James F. Gilchrist
    • 4
  • Stuart W. Prescott
    • 1
  • Patrick T. Spicer
    • 1
    Email author
  1. 1.Complex Fluids Group, Chemical EngineeringUNSW AustraliaSydneyAustralia
  2. 2.Microstructured Fluids, Procter & Gamble Co.West ChesterUSA
  3. 3.Chemical EngineeringUC Santa BarbaraSanta BarbaraUSA
  4. 4.Chemical and Biomolecular EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations