A bootstrap mechanism for non-colloidal suspension viscosity

Abstract

The role of friction in non-colloidal suspensions is examined with a model which splits the viscosity into a frictionless component (τ*) plus a frictional component which depends on the ratio of the particle pressure (P) to the shear stress (τ). The model needs the input by computation of τ* and P and a suitable choice of particle friction coefficient (μ). It can be extended to elongational flows and cases where sphere roughness is important; volume fractions up to 0.5 are considered. It is shown that friction acts in a feedback or “bootstrap” manner to increase the suspension viscosity. The analysis is also useful for deducing the friction coefficient in suspensions from experimental data. It was applied to several sets of experimental data and reasonable correlations of the viscosities were demonstrated. An example of the correlation for spheres in a silicone oil is shown for volume fractions 0.1–0.5.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bertevas E, Fan XJ, Tanner RI (2010) Simulation of the rheological properties of suspensions of oblate spheroidal particles in a Newtonian fluid. Rheol Acta 49:53–73

    CAS  Article  Google Scholar 

  2. Bowden FP, Tabor D (1956) Friction and lubrication. Methuen, London

    Google Scholar 

  3. Boyer F, Guazzelli É, Pouliquen O (2011) Unifying suspension and granular rheology. Phys. Rev. Letters 107:art 188301

    Article  Google Scholar 

  4. Chatté G, Comtet J, Nigues A, Bocquet L, Siria A, Ducouret G, Lequeux F, Lenoir N, Ovarlez G, Colin A (2018) Shear-thinning in non-Brownian suspensions. Soft Matter 14:879–893

    Article  Google Scholar 

  5. Cheal O, Ness C (2018) Rheology of dense granular suspensions under extensional flow. J Rheol 62:501–512

    CAS  Article  Google Scholar 

  6. Dai SC, Tanner RI (2017) Elongational flows of some non-colloidal suspensions. Rheol Acta 56:63–71

    CAS  Article  Google Scholar 

  7. Dai SC, Bertevas E, Qi F, Tanner RI (2013) Viscometric functions for non-colloidal sphere suspensions with Newtonian matrices. J Rheol 57:493–510

    CAS  Article  Google Scholar 

  8. Dai SC, Qi F, Tanner RI (2014) Viscometric functions of concentrated non-colloidal suspensions of spheres in a viscoelastic matrix. J Rheol 58:183–198

    CAS  Article  Google Scholar 

  9. Gallier S, Lemaire E, Peters F, Lobry L (2014) Rheology of sheared suspensions of rough frictional particles. J Fluid Mech 757:514–549

    CAS  Article  Google Scholar 

  10. Guy BM, Hermes M, Poon WCK (2015) Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett 115:art 088304

    Article  Google Scholar 

  11. Huang N, Ovarlez G, Bertrand F, Rodts S, Coussot P, Bonn D (2005) Flow of wet granular materials. Phys Rev Lett 94:028301

    CAS  Article  Google Scholar 

  12. Keentok M, Xue SC (1999) Edge fracture in cone-plate and parallel plate flows. Rheol Acta 38:321–348

    CAS  Article  Google Scholar 

  13. Kroupa M, Soos M, Kosek J (2017) Slip on a particle surface as the possible origin of shear thinning in non-Brownian suspensions. Phys Chem Chem Phys 19:5979–5984

    CAS  Article  Google Scholar 

  14. Mahmud A, Dai SC, Tanner RI (2018) A quest for a model of non-colloidal suspensions with Newtonian matrices. Rheol Acta 57:29–41

    CAS  Article  Google Scholar 

  15. Mari R, Seto R, Morris JF, Denn MM (2014) Shear thickening, frictional and frictionless rheologies in non-Brownian suspensions. J Rheol 58:1693–1724

    CAS  Article  Google Scholar 

  16. Moon JY, Dai SC, Chang L, Lee JS, Tanner RI (2015) The effect of sphere roughness on the rheology of concentrated suspensions. J Non- Newt Fluid Mech 223:233–239

    CAS  Article  Google Scholar 

  17. Moore DF (1975) Principles and applications of tribology. Pergamon Press, Oxford

    Google Scholar 

  18. Ovarlez G, Mahaut F, Deboeuf S, Lenoir N, Hormozi S, Chateau X (2015) Flows of suspensions of particles in yield stress fluids. J Rheol 59:1449–1486

    CAS  Article  Google Scholar 

  19. Qi F, Tanner RI (2011) Relative viscosity of bimodal suspensions. Korea-Australia Rheology J 23:105–111

    Article  Google Scholar 

  20. Seto R, Giusteri GG, Martinello A (2017) Microstructure and thickening of dense suspensions under extensional and shear flows. J Fluid Mech Rapids 825:art. R3

    Article  Google Scholar 

  21. Sierou A, Brady JF (2002) Rheology and microstructure in concentrated noncolloidal suspensions. J Rheol 46:1031–1056

    CAS  Article  Google Scholar 

  22. Tanner RI, Dai SC (2016a) Rheology of non-colloidal suspensions with corn syrup matrices. Rheol Acta 55:739–747

    CAS  Article  Google Scholar 

  23. Tanner RI, Dai SC (2016b) Particle roughness and rheology in noncolloidal suspensions. J Rheol 60:809–818

    CAS  Article  Google Scholar 

  24. Thomas DG (1965) Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J Colloid Sci 20:267–277

    CAS  Article  Google Scholar 

  25. Vázquez-Quesada A, Mahmud A, Dai SC, Ellero M, Tanner RI (2017) Investigating the causes of shear-thinning in non-colloidal suspensions. J. Non- Newt. Fluid Mech. 248:1–7

    Article  Google Scholar 

  26. Zarraga IE, Hill DA, Leighton DT (2000) The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J Rheol 44:185–220

    CAS  Article  Google Scholar 

  27. Zarraga IE, Hill DA, Leighton DT (2001) Normal stress and free surface deformation in concentrated suspensions of noncolloidal spheres in a viscoelastic fluid. J Rheol 45:1065–1084

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the University of Sydney for providing scholarship support for Arif Mahmud. JiYoung Moon acknowledges that his research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1A6A3A03003276). C.N. acknowledges financial support from the Maudslay-Butler Research Fellowship at Pembroke College, Cambridge.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roger I. Tanner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanner, R.I., Ness, C., Mahmud, A. et al. A bootstrap mechanism for non-colloidal suspension viscosity. Rheol Acta 57, 635–643 (2018). https://doi.org/10.1007/s00397-018-1103-y

Download citation

Keywords

  • Suspensions
  • Shear viscosity
  • Elongational flow
  • Friction