Advertisement

Rheologica Acta

, Volume 57, Issue 5, pp 377–388 | Cite as

Classification of thermorheological complexity for linear and branched polyolefins

  • Zhi-Chao Yan
  • Florian J. Stadler
Review
  • 149 Downloads

Abstract

Thermorheological complexity in polyolefins has been reported many times but so far it has not been systematically investigated. Here, a classification of the different types of thermorheologically complex behavior is proposed, which categorize the available data in five different types and describe key characteristics. These definitions are based on polyethylene, but other polymers show similar patterns for materials with comparable branching structure. Linear materials are thermorheologically simple as long as many very long short-chain branches do not introduce phase separation. Sparsely branched materials show the most significant thermorheological complexity, with significant shape changes of rheological functions with temperature, while higher amounts of branching (such as trees or combs) reduce thermorheological complexity and increase Ea at the same time. Low-density polyethylene shows a significant modulus shift at different temperatures probably due to excessive low molecular components.

Keywords

Thermorheological behavior Thermorheological complexity Long-chain branching 

Abbreviations

WLF relation

Williams-Landel-Ferry relation

VFTH relation

Vogel-Fulcher-Tammann-Hesse relation

Tg

glass transition temperature

TTS

time-temperature superposition

LDPE

low-density polyethylene

LLDPE

linear low-density polyethylene

HDPE

high-density polyethylene

LCB/LCBs

long-chain branch(-ed/-ing/-es)

SCB/SCBs

short-chain branch(-ed/-ing/-es)

mPE

metallocenes catalyzed polyethylene

PP

polypropylene

PE

polyethylene

PS

polystyrene

PI

polyisoprene

PBd

polybutylene

hPBd

hydrogenated polybutadiene

THV

semifluorinated tetrafluoroethylene-hexafluoropropylene-vinylidenfluoride copolymer

|G*|

magnitude of the complex shear modulus

G

storage modulus

G

loss modulus

δ

phase angle

ω

angular frequency

aT

temperature dependent shift factor

γ0

oscillatory deformation amplitude

Ea

activation energy determined according to Arrhenius relation

H

relaxation strength

τ

relaxation time

δc

characteristic phase angle (Trinkle et al. 2002)

δmax

phase angle at the maximum Ea determined from δ (Stadler et al. 2016)

η0

zero shear-rate viscosity

Notes

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (21574086), Shenzhen Sci & Tech research grant (ZDSYS201507141105130), and Shenzhen City Science and Technology Plan Project (JCYJ20160520171103239).

References

  1. Arrhenius S (1916) The viscosity of pure liquids. Meddelanden Från K Vetenskapsakademiens Nobelinstitut 3(1–40)Google Scholar
  2. Auhl D (2006) Molekulare Struktur und rheologische Eigenschaften von strahlenmodifizierten Polypropylen. Lehrstuhl für Polymerwerkstoffe. Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg. Ph. DGoogle Scholar
  3. Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37(25):9465–9472.  https://doi.org/10.1021/ma030579w CrossRefGoogle Scholar
  4. Auhl D, Ramirez J, Likhtman AE, Chambon P, Fernyhough C (2008) Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights. J Rheol 52(3):801–835.  https://doi.org/10.1122/1.2890780 CrossRefGoogle Scholar
  5. Bates FS (2015) personal communicationGoogle Scholar
  6. Bonchev D, Dekmezian AH, Markel E, Faldi A (2003) Topology-rheology regression models for monodisperse linear and branched polyethylenes. J Appl Polym Sci 90(10):2648–2656.  https://doi.org/10.1002/app.12906 CrossRefGoogle Scholar
  7. Carella JM, Gotro JT, Graessley WW (1986) Thermorheological effects of long-chain branching in entangled polymer melts. Macromolecules 19(3):659–667.  https://doi.org/10.1021/ma00157a031 CrossRefGoogle Scholar
  8. Davies AR, Anderssen RS (1998) Sampling localization and duality algorithms in practice. J Non-Newtonian Fluid Mech 79(2–3):235–253CrossRefGoogle Scholar
  9. Dordinejad AK, Jafari SH (2013) A qualitative assessment of long chain branching content in LLDPE, LDPE and their blends via thermorheological analysis. J Appl Polym Sci 130(5):3240–3250.  https://doi.org/10.1002/app.39560 CrossRefGoogle Scholar
  10. Fang H, Zhang Y, Bai J, Wang Z, Wang Z (2013) Bimodal architecture and rheological and foaming properties for gamma-irradiated long-chain branched polylactides. RSC Adv 3(23):8783–8795.  https://doi.org/10.1039/c3ra40879e CrossRefGoogle Scholar
  11. Fulcher GS (1925a) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355CrossRefGoogle Scholar
  12. Fulcher GS (1925b) Analysis of recent measurements of the viscosity of glasses. II. J Am Ceram Soc 8:789–794CrossRefGoogle Scholar
  13. Gabriel C (2001) Einfluss der molekularen Struktur auf das viskoelastische Verhalten von Polyethylenschmelzen. Shaker-Verlag, AachenGoogle Scholar
  14. Hepperle J, Münstedt H, Haug PK, Eisenbach CD (2005) Rheological properties of branched polystyrenes: linear viscoelastic behavior. Rheol Acta 45(2):151–163.  https://doi.org/10.1007/s00397-005-0033-7 CrossRefGoogle Scholar
  15. Inkson NJ, Graham RS, Mcleish TCB, Groves DJ, Fernyhough CM (2006) Viscoelasticity of monodisperse comb polymer melts. Macromolecules 39(12):4217–4227.  https://doi.org/10.1021/ma060018f CrossRefGoogle Scholar
  16. Kaschta J, Schwarzl FR (1994a) Calculation of discrete retardation spectra from creep data. 1. Method. Rheol Acta 33(6):517–529.  https://doi.org/10.1007/Bf00366336 CrossRefGoogle Scholar
  17. Kaschta J, Schwarzl FR (1994b) Calculation of discrete retardation spectra from creep data. 2. Analysis of measured creep curves. Rheol Acta 33(6):530–541.  https://doi.org/10.1007/Bf00366337 CrossRefGoogle Scholar
  18. Keßner U, Kaschta J, Münstedt H (2009) Determination of method-invariant activation energies of long-chain branched low-density polyethylenes. J Rheol 53(4):1001–1016.  https://doi.org/10.1122/1.3124682 CrossRefGoogle Scholar
  19. Keßner U, Kaschta J, Stadler FJ, Le Duff CCS, Drooghaag X, MüNstedt H (2010) Thermorheological behavior of various short- and long-chain branched polyethylenes and their correlations with the molecular structure. Macromolecules 43(17):7341–7350.  https://doi.org/10.1021/ma100705f CrossRefGoogle Scholar
  20. Kokko E, Malmberg A, Lehmus P, Lofgren B, Seppala JV (2000) Influence of the catalyst and polymerization conditions on the long-chain branching of metallocene-catalyzed polyethenes. J Polym Sci A Polym Chem 38(2):376–388.  https://doi.org/10.1002/(Sici)1099-0518(20000115)38:2<376::Aid-Pola12>3.0.Co;2-5 CrossRefGoogle Scholar
  21. Laun HM (1987) Orientation of macromolecules and elastic deformations in polymer melts. Influence of molecular structure on the reptation of molecules. Progr Colloid Polym Sci 75:111–139.  https://doi.org/10.1007/BFb0109414 Google Scholar
  22. Liu C-Y, He J, Keunings R, Bailly C (2006) New linearized relation for the universal viscosity—temperature behavior of polymer melts. Macromolecules 39(25):8867–8869.  https://doi.org/10.1021/ma061969w CrossRefGoogle Scholar
  23. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, Garcia-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 35(8):3066–3075.  https://doi.org/10.1021/ma0117559 CrossRefGoogle Scholar
  24. Malmberg A, Liimatta J, Lehtinen A, Lofgren B (1999) Characteristics of long chain branching in ethene polymerization with single site catalysts. Macromolecules 32(20):6687–6696.  https://doi.org/10.1021/ma9907136 CrossRefGoogle Scholar
  25. Münstedt H, Schwarzl FR (2014) Deformation and flow of polymeric materials. Springer, HeidelbergCrossRefGoogle Scholar
  26. Pearson DS, Helfand E (1984) Viscoelastic properties of star-shaped polymers. Macromolecules 17(4):888–895.  https://doi.org/10.1021/ma00134a060 CrossRefGoogle Scholar
  27. Piel C, Starck P, Seppälä JV, Kaminsky W (2006a) Thermal and mechanical analysis of metallocene-catalyzed ethylene-a-olefin copolymers: the influence of length and number of the crystallizing side-chains. J Polym Sci A Polym Chem 44(5):1600–1612.  https://doi.org/10.1002/pola.21265 CrossRefGoogle Scholar
  28. Piel C, Stadler FJ, Kaschta J, Rulhoff S, Münstedt H, Kaminsky W (2006b) Structure-property relationships of linear and long-chain branched metallocene high-density polyethylenes characterized by shear rheology and SEC-MALLS. Macromol Chem Phys 207(1):26–38.  https://doi.org/10.1002/macp.200500321 CrossRefGoogle Scholar
  29. Resch JA, Keßner U, Stadler FJ (2011) Thermorheological behavior of polyethylene: a sensitive probe to molecular structure. Rheol Acta 50(5–6):559–575.  https://doi.org/10.1007/s00397-011-0575-9 CrossRefGoogle Scholar
  30. Roovers J, Toporowski PM, Douglas J (1995) Thermodynamic properties of dilute and semidilute solutions of regular star polymers. Macromolecules 28(21):7064–7070.  https://doi.org/10.1021/ma00125a005 CrossRefGoogle Scholar
  31. Stadler FJ (2010) Effect of incomplete datasets on the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol Acta 49(10):1041–1057.  https://doi.org/10.1007/s00397-010-0479-0 CrossRefGoogle Scholar
  32. Stadler FJ (2011) Evidence of intra-chain phase separation in molten short-chain branched polyethylene. Express Polym Lett 5(4):327–341.  https://doi.org/10.3144/expresspolymlett.2011.33 CrossRefGoogle Scholar
  33. Stadler FJ (2012) Detecting very low levels of long-chain branching in metallocene-catalyzed polyethylenes. Rheol Acta 51(9):821–840.  https://doi.org/10.1007/s00397-012-0642-x CrossRefGoogle Scholar
  34. Stadler FJ, Bailly C (2009) A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol Acta 48(1):33–49.  https://doi.org/10.1007/s00397-008-0303-2 CrossRefGoogle Scholar
  35. Stadler FJ, Münstedt H (2009) Correlations between the shape of viscosity functions and the molecular structure of long-chain branched polyethylenes. Macromol Mater Eng 294(1):25–34.  https://doi.org/10.1002/mame.200800251 CrossRefGoogle Scholar
  36. Stadler FJ, Kaschta J, Münstedt H (2005) Dynamic-mechanical behavior of polyethylenes and ethene-/α-olefin-copolymers. Part I. α′—relaxation. Polymer 46(23):10311–10320.  https://doi.org/10.1016/j.polymer.2005.07.099 CrossRefGoogle Scholar
  37. Stadler FJ, Piel C, Kaschta J, Rulhoff S, Kaminsky W, Münstedt H (2006a) Dependence of the zero shear-rate viscosity and the viscosity function of linear high-density polyethylenes on the mass-average molar mass and polydispersity. Rheol Acta 45(5):755–764.  https://doi.org/10.1007/s00397-005-0042-6 CrossRefGoogle Scholar
  38. Stadler FJ, Piel C, Kaminsky W, Münstedt H (2006b) Rheological characterization of long-chain branched polyethylenes and comparison with classical analytical methods. Macromol Symp 236(1):209–218.  https://doi.org/10.1002/masy.200650426 CrossRefGoogle Scholar
  39. Stadler FJ, Gabriel C, Münstedt H (2007) Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear. Macromol Chem Phys 208(22):2449–2454.  https://doi.org/10.1002/macp.200700267 CrossRefGoogle Scholar
  40. Stadler FJ, Kaschta J, Münstedt H (2008) Thermorheological behavior of various long-chain branched polyethylenes. Macromolecules 41(4):1328–1333.  https://doi.org/10.1021/ma702367a CrossRefGoogle Scholar
  41. Stadler FJ, Pyckhout-Hintzen W, Schumers JM, Fustin CA, Gohy JF, Bailly C (2009) Linear viscoelastic rheology of moderately entangled telechelic polybutadiene temporary networks. Macromolecules 42(16):6181–6192.  https://doi.org/10.1021/ma802488a CrossRefGoogle Scholar
  42. Stadler FJ, Arikan B, Kaschta J, Kaminsky W (2010) Long-chain branches in syndiotactic polypropene induced by vinyl chloride. Macromol Chem Phys 211(13):1472–1481.  https://doi.org/10.1002/macp.200900688 CrossRefGoogle Scholar
  43. Stadler FJ, Arikan-Conley B, Kaschta J, Kaminsky W, Münstedt H (2011) Synthesis and characterization of novel ethylene-graft-ethylene/propylene copolymers. Macromolecules 44(12):5053–5063.  https://doi.org/10.1021/ma200588r CrossRefGoogle Scholar
  44. Stadler FJ, Chen SG, Chen SJ (2015) On “modulus shift” and thermorheological complexity in polyolefins. Rheol Acta 54(8):695–704.  https://doi.org/10.1007/s00397-015-0864-9 CrossRefGoogle Scholar
  45. Stadler FJ, Chun YS, Han JH, Lee E, Park SH, Yang CB, Choi C (2016) Deriving comprehensive structural information on long-chain branched polyethylenes from analysis of thermo-rheological complexity. Polymer 104:179–192.  https://doi.org/10.1016/j.polymer.2016.07.084 CrossRefGoogle Scholar
  46. Stange J, Wächter S, Kaspar H, Münstedt H (2007) Linear rheological properties of the semi-fluorinated copolymer tetrafluoroethylene-hexafluoropropylene-vinylidenfluoride (THV) with controlled amounts of long-chain branching. Macromolecules 40(7):2409–2416.  https://doi.org/10.1021/ma0626867 CrossRefGoogle Scholar
  47. Tammann G, Hesse W (1926) The dependence of viscosity upon the temperature of supercooled liquids. Zeitschrift fuer Anorganische und Allgemeine Chemie 156:245–257CrossRefGoogle Scholar
  48. Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen plot II—classification of long chain branched polymers by their topology. Rheol Acta 41(1–2):103–113.  https://doi.org/10.1007/s003970200010 CrossRefGoogle Scholar
  49. Van Gurp M, Palmen J (1998) Time-temperature superposition for polymeric blends. Rheol Bull 67(1):5–8Google Scholar
  50. Vega JF, Santamaria A, Munoz-Escalona A, Lafuente P (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromolecules 31(11):3639–3647CrossRefGoogle Scholar
  51. Vogel H (1921) The law of the relation between the viscosity of liquids and the temperature. Physik Z 22:645–646Google Scholar
  52. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707.  https://doi.org/10.1021/ja01619a008 CrossRefGoogle Scholar
  53. Wood-Adams P, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromolecules 34(18):6281–6290.  https://doi.org/10.1021/ma0017034 CrossRefGoogle Scholar
  54. Ye Z, Alobaidi F, Zhu S (2004) Synthesis and rheological properties of long-chain-branched isotactic polypropylenes prepared by copolymerization of propylene and nonconjugated dienes. Ind Eng Chem Res 43(11):2860–2870.  https://doi.org/10.1021/ie0499660 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety EvaluationShenzhen UniversityShenzhenPeople’s Republic of China

Personalised recommendations