Skip to main content
Log in

Measurement of planar elongation stress and viscosity in step planar elongation flow for mobile viscoelastic fluids

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We propose a new technique which can treat low viscous viscoelastic fluids and which can measure the start-up and relaxation behavior of elongational stress in step elongation rate flow. This new device consists of two parts: the squeeze cell and the optical analyzer. The squeeze cell generates the planar squeeze flow and causes the step planar elongational flow at the stagnation point. The optical system measures the transient behavior of both birefringence and orientation angle in the start-up and relaxation region at the stagnation point. In this paper, we demonstrate the two-dimensionality of the flow in the planar squeeze cell. Next, we evaluated the planar elongational stress and viscosity from optical results for Maxwell fluid. These results show good agreement with Maxwell model. Finally, we clarify the measurement accuracy from the measurement results in channels of various sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ, Huang J, James DF (2001) An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J Rheol 45(1):83–114

    Article  Google Scholar 

  • Binding DM, Jones DM, Walters K (1989) The shear and extensional flow properties of m1. J Non-Newtonia Fluid Mech 35(2-3):121–135

    Article  Google Scholar 

  • Byars JA, Binnington RJ, Boger DV (1997) Entry flow constitutive modelling of fluid S1. J Non-Newtonian Fluid Mech 72:219–235

    Article  Google Scholar 

  • Cathey CA, Fuller GG (1990) The optical and mechanical response of flexible polymer solutions to extensional flow. J Non-Newtonian Fluid Mech 34:63–88

    Article  Google Scholar 

  • Chan RC, Gupta RK, Sridhar T (1988) Fiber spinning of very dilute solutions of polyacrylamide in water. J Non-Newtonian Fluid Mech 30:267–283

    Article  Google Scholar 

  • Collier JR, Romanoschi O, Petrovan S (1998) Elongational rheology of polymer melts and solutions. Appl Polymer Sci 69(9):2357–2367

    Article  Google Scholar 

  • Feigl K, Tanner FX, Edwards BJ, Collier JR (2003) Numerical study of the measurement of elongational viscosity of polymeric fluids in a semihyperbolically converging die. J Non-Newtonian Fluid Mech 115:191–215

    Article  Google Scholar 

  • Ferguson J, Hudson NE (1994) The shear and extensional flow properties of s1. J Non-Newtonian Fluid Mech 52(2):121–135

    Article  Google Scholar 

  • Fischer P, Fuller GG, Lin Z (1997) Branched viscoelastic surfactant solutions and their response to elongational flow. Rheol Acta 36(6):632–638

    Article  Google Scholar 

  • Fuller GG (1995) Optical rheometry of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Fuller GG, Leal LG (1981) Flow birefringence of concentrated polymer solutions in two-dimensional flows. J Polym Sci: Polym Phys Ed 19(4):557–587

    Google Scholar 

  • Fuller GG, Mikkelsen KJ (1989) Optical rheometry using a rotary polarization modulator. J Rheol 33 (5):761–769

    Article  Google Scholar 

  • Fuller GG, Cathey CA, Hubbard B, Zebrowski BE (1987) Extensional viscosity measurements for low-viscosity fluids. J Rheol 31(3):235–249

    Article  Google Scholar 

  • Hachmann P, Meissner J (2003) Rheometer for equibiaxial and planar elongations of polymer melts. J Rheol 47(4):989–1010

    Article  Google Scholar 

  • Hasegawa T (1994) Elongational stress of the flow of polymer solutions. JSME Int J Series B 37(2):209–217

    Article  Google Scholar 

  • Hasegawa T, Iwaida T (1984) Experiments on elongational flow of dilute polymer solutions Part I: jet reaction and excess pressure drop for the flow through small apertures. J Non-Newtonian Fluid Mech 15:257–277

    Article  Google Scholar 

  • Hasegawa T, Nakamura H (1991) Experimental study of the elongational stress of dilute polymer solutions in orifice flows. J Non-Newtonian Fluid Mech 38:159–181

    Article  Google Scholar 

  • Hu Y, Wang SQ, Jamieson AM (1994) Elongational flow behavior of cetyltrimethylammonium bromide/sodium salicylate surfactant solutions. J Phys Chem 98(34):8555–8559

    Article  Google Scholar 

  • Hudson NE, Jones TER (1993) The Al project—an overview. J Non-Newtonian Fluid Mech 46(1):69–88

    Article  Google Scholar 

  • James DF, Chandler GM, Armour SJ (1990a) Converging channel rheometer for the measurement of extensional viscosity. J Non-Newtonian Fluid Mech 35(2-3):421–443

    Article  Google Scholar 

  • James DF, Chandler GM, Armour SJ (1990b) Measurement of the extensional viscosity of m1 in a converging channel rheometer. J Non-Newtonian Fluid Mech 35(2-3):445–458

    Article  Google Scholar 

  • Jones WM, Hudson N, Ferguson J (1990) The extensional properties of m1 obtained from the stretching of a filament by a falling pendant drop. J Non-Newtonian Fluid Mech 35(2-3):263–276

    Article  Google Scholar 

  • Kim HW, Pendse A, Collier JR (1994) Polymer melt lubricated elongational flow. J Rheol 38(4):831–845

    Article  Google Scholar 

  • Kotaka T, Kojima A, Okamoto M (1997) Elongational flow opto-rheometry for polymer melts, 1. Construction of an elongational flow opto-rheometer and some preliminary results. Rheo Acta 36:646–656

    Google Scholar 

  • Koyama K, Ishizaka O (1989) Birefringence of polyethylene melt in transient elongational flow at constant strain rate. J Poly Sci, Part B Poly Phy 27:297–306

    Article  Google Scholar 

  • Laun HM, Münstedt H (1978) Elongational behaviour of a low density polyethylene melt, I. Strain rate and stress dependence of viscosity and recoverable strain in the steady-state, Comparison with shear data. Influence of interfacial tension. Rheol Acta 17:415–425

    Article  Google Scholar 

  • Lu B, Li X, Scriven LE, Davis HT, Talmon Y, Zakin JL (1998) Effect of chemical structure on viscoelasticity and extensional viscosity of drag-reducing cationic surfactant solutions. Langmuir 14(1):8–16

    Article  Google Scholar 

  • Mackay ME, Ch Petrie JS (1989) Estimates of apparent elongational viscosity using the fibre spinning and “pure” methods. Rheol Acta 28:281–293

    Article  Google Scholar 

  • Macosko CW, Ocansey MA, Winter HH (1982) Steady planer extension with lubricated dies. J Non-Newtonian Fluid Mech 11:301–316

    Article  Google Scholar 

  • Matta JE, Tytus RP (1990) Liquid stretching using a falling cylinder. J Non-Newtonian Fluid Mech 35:215–229

    Article  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  Google Scholar 

  • Münstedt H (1980) Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24–26:847–867

    Article  Google Scholar 

  • Ooi YW, Sridhar T (1994) Extensional rheometry of fluid s1. J Non-Newtonian Fluid Mech 52(2):153–162

    Article  Google Scholar 

  • Orr NV, Sridhar T (1999) Probing the dynamics of polymer solutions in extensional flow using step strain rate experiments. J Non-Newtonian Fluid Mech 82:203–232

    Article  Google Scholar 

  • Pendse AV, Collier JR (1996) Elongational viscosity of polymer melts: a lubricated skin-core flow approach. J Appl Polymer Sci 59(5):1305–1314

    Article  Google Scholar 

  • Shikata T, Dahman SJ, Pearson DS (1994) Rheo-optical behavior of wormlike micelles. Langmuir 10 (7):3470–3476

    Article  Google Scholar 

  • Sridhar T (1990) An overview of the project m1. J Non-Newtonian Fluid Mech 35(2-3):85–92

    Article  Google Scholar 

  • Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK (1991) Measurement of extensional viscosity of polymer solutions. J Non-Newtonian Fluid Mech 40:271–280

    Article  Google Scholar 

  • Sridhar T, Nguyen DA, Fuller GG (2000) Birefringence stress growth in uniaxial extension of polymer solutions. J Non-Newtonian Fluid Mech 90:299–315

    Article  Google Scholar 

  • Tirtaatmadja V, Sridhar T (1993) A filament stretching device for measurement of extensional viscosity. J Rheol 37:1081–1102

    Article  Google Scholar 

  • van Aken JA, Janeschitz-Kriegl H (1980) New apparatus for the simultaneous measurement of stress and flow birefringence in biaxial extension of polymer melts. Rheol Acta 19(6):744–752

    Article  Google Scholar 

  • Venerus DC, Zhu SH, Ottinger HC (1999) Stress and birefringence measurements during the uniaxial elongation of polystyrene melts. J Rheol 43(3):795–813

    Article  Google Scholar 

  • Wheeler EK, Izu P, Fuller GG (1996) Structure and rheology of wormlike micelles. Rheol Acta 35 (2):139–149

    Article  Google Scholar 

  • Willenbacher N, Hingmann R (1994) Shear and elongational flow properties of fluid s1 from rotational, capillary, and opposed jet rheometry. J Non-Newtonian Fluid Mech 52(2):163–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Kato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, M., Shirakashi, M. & Takahashi, T. Measurement of planar elongation stress and viscosity in step planar elongation flow for mobile viscoelastic fluids. Rheol Acta 56, 649–659 (2017). https://doi.org/10.1007/s00397-017-1023-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-017-1023-2

Keywords

Navigation