Skip to main content
Log in

Theoretical and experimental study on the motion and shape of viscoelastic falling drops through Newtonian media

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this paper, creeping motion of a viscoelastic drop falling through a Newtonian fluid is investigated experimentally and analytically. A polymeric solution of 0.08 % xanthan gum in 80:20 glycerol/water and silicon oil is implemented as the viscoelastic drop and the bulk viscous fluids, respectively. The shape and motion of falling drops are visualized using a high speed camera. The perturbation technique is employed for both interior and exterior flows, and Deborah and capillary numbers are considered as perturbation parameters up to second order. The product of Deborah and capillary numbers is also used as a perturbation parameter to apply the boundary condition on the deformation on the interface of viscoelastic drop and viscous media. We used the Giesekus nonlinear constitutive equation for the drop phase for the first time. It is shown that the obtained analytical solution has better agreement with experimental observations than the previous analytical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Batchelor G B (1967) An Introducti on to Fluid Dynamics, Cambridge University

  • Bird RB, Wiest JM (1985) Anisotropic effects in dumbbell kinetic theory. J Rheol 29:519–532

    Article  Google Scholar 

  • Bird R B, Armstrong R C, Hassager O (1987) Dynamics of Polymeric Liquids, fluid dynamics, Vol. 1, second ed., Wiley, New York

  • Davison P, Mentzer E (1982) Polymer flooding in North Sea reservoirs. Soc Pet Eng J 22(03):353–362

    Article  Google Scholar 

  • German G, Bertola V (2010) Formation of viscoplastic drops by capillary breakup. Phys Fluids 22:33101

    Article  Google Scholar 

  • Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Non-Newtonian Fluid Mech 11:69–109

    Article  Google Scholar 

  • Giesekus H (1983) Stressing behavior in simple shear flow as predicated by a new constitutive model for polymer fluids. J Non-Newtonian Fluid Mech 12:367–374

    Article  Google Scholar 

  • Hadamard J (1911) Mouvement permanent lent d’une sphere liquide et visqueuse dans un liquide. C R Acad Sci Paris 152:1735–1738

    Google Scholar 

  • Happel J, Brenner H (1965) Low Reynolds Number Hydrodynamics, Prentice-Hall

  • Joseph DD, Beavers GS, Fosdick RL (1972) The free surface on a liquid between cylinders rotating at different speeds speeds, Part 1. Arch Rat Mech Anal 49:321–380

    Google Scholar 

  • Joseph DD, Beavers GS, Fosdick RL (1973) The free surface on a liquid between cylinders rotating at different speeds speeds, Part 2. Arch Rat Mech Anal 49:381–401

    Google Scholar 

  • Kishore N, Chhabra RP, Eswaran V (2008) Effect of dispersed phase rheology on the drag of single and of ensembles of fluid spheres at moderate Reynolds numbers. Chem Eng J 141:387–392

    Article  Google Scholar 

  • Koh CJ, Leal LG (1989) The stability of drop shapes for translation at zero Reynolds number through a quiescent fluid. Phys Fluids A 1:1309–1313

    Article  Google Scholar 

  • Landau L, Lifshitz I (1959) Fluid Mechanics, Pergamon

  • Mckinley GM (2005) Dimensionless groups for understanding free surface flows of complex fluids. Rheol Bull 74:6–9

    Google Scholar 

  • Mukherjee S, Sarkar K (2011) Viscoelastic drop falling through a viscous medium. J Phys Fluids 23:013101

    Article  Google Scholar 

  • Nussionvitch (1997) Hydrocolloid Applications. Blackie Academic & Profes-sional, New York

    Book  Google Scholar 

  • Payne LE, Pell WH (1960) The Stokes flow problem for a class of axially symmetric bodies. J Fluid Mech 7:529–342

    Article  Google Scholar 

  • Rybczynski W (1911) Uber die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium, Bull. Acad. Sci. de Cracovie A: 40–46

  • Smagin PM, Lavrenteva OM, Nir A (2011) Motion and shape of an axisymmetric viscoplastic drop slowly falling through a viscous fluid. Rheol Acta 50:361–374

    Article  Google Scholar 

  • Smolianski HA, Luukka P (2003) Numerical bubble dynamics. Computer Aided Chem Eng 14:941–946

    Article  Google Scholar 

  • Smolka LB, Belmonte A (2006) Charge screening effects on filament dynamics in xanthan gum solutions. J Non-Newtonian Fluid Mech 137:103–109

    Article  Google Scholar 

  • Sostarez MC, Belmonte A (2003) Motion and shape of a viscoelastic drop falling through a viscose fluid. J Fluid Mech 497:235–252

    Article  Google Scholar 

  • Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Annu Rev Fluid Mech 26:65–102

    Article  Google Scholar 

  • Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc London Ser A 146:501–523

    Article  Google Scholar 

  • Taylor TD, Acrivos A (1964) On the deformation and drag of a falling viscous drop at low Reynolds number. J Fluid Mech 18:466–476

    Article  Google Scholar 

  • Vamerzani BZ, Norouzi M, Firoozabadi B (2014) Analytical solution for creeping motion of a viscoelastic drop falling through a Newtonian fluid. Korea-Australia Rheo J 26(1):91–104

    Article  Google Scholar 

  • Wagner MG, Slattery JC (1971) Slow flow of a non-Newtonian fluids past a droplet. AICHE J 17:1198–1207

    Article  Google Scholar 

  • Wanchoo RK, Sharma SK, Gupta R (2003) Shape of a Newtonian liquid drop moving through an immiscible quiescent non-Newtonian liquid. Chem Eng And Proc 42:387–393

    Article  Google Scholar 

  • White F M (2006) Viscose fluid flow, third ed., New York

  • You R, Borhan A, Haj-Hariri H (2008) A finite volume formulation for simulating drop motion in a viscoelastic two-phase system in a viscoelastic two-phase system. J Non-Newtonian Fluid Mech 153(2):109–129

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Wagner and Slattery (1971) for their fundamental work in the field of drop motion. We also appreciate the work of Sostarez and Belmonte (2003) because the present analytical solution is generally formed based on their sophisticated analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Norouzi.

Appendices

Appendix

The details of perturbation solution for velocity and pressure fields are presented in this section.

A. 1. The zero order terms

$$ {u}_{r,0}=\frac{1}{2}\left(2-\frac{3k+2}{k+1}\frac{1}{r}+\frac{k}{k+1}\frac{1}{r^3}\right) \cos \theta $$
(A.1)
$$ {\tilde{u}}_{r,0}=\frac{1}{2}\left({r}^2-1\right) \cos \theta $$
(A.2)
$$ {u}_{\theta, 0}=-\frac{1}{4}\left(4-\frac{3k+2}{k+1}\frac{1}{r}-\frac{k}{k+1}\frac{1}{r^3}\right) \sin \theta $$
(A.3)
$$ {\tilde{u}}_{\theta, 0}=-\frac{1}{2}\left(2{r}^2-1\right) \sin \theta $$
(A.4)
$$ {\tau}_0=\left[\begin{array}{ccc}\hfill \frac{\left(3k{r}^2+2{r}^2-3k\right)}{\left(k+1\right){r}^4} \cos \theta \hfill & \hfill -\frac{3}{2}\frac{k}{\left(k+1\right){r}^4} \sin \theta \hfill & \hfill 0\hfill \\ {}\hfill -\frac{3}{2}\frac{k}{\left(k+1\right){r}^4} \sin \theta \hfill & \hfill -\frac{1}{2}\frac{\left(3k{r}^2+2{r}^2-3k\right)}{\left(k+1\right){r}^4} \cos \theta \hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -\frac{1}{2}\frac{\left(3k{r}^2+2{r}^2-3k\right)}{\left(k+1\right){r}^4} \cos \theta \hfill \end{array}\right] $$
(A.5)
$$ {\tilde{\tau}}_0=\left[\begin{array}{ccc}\hfill 2r \cos \theta \hfill & \hfill -\frac{3}{2}r \sin \theta \hfill & \hfill 0\hfill \\ {}\hfill -\frac{3}{2}r \sin \theta \hfill & \hfill -r \cos \theta \hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill -r \cos \theta \hfill \end{array}\right] $$
(A.6)
$$ {p}_0=-\frac{1}{2}\frac{ \cos \theta }{r^2}\frac{\left(3k+2\right)}{\left(k+1\right)}+\frac{\rho g{R}^2}{\eta {U}_{\infty }}r \cos \theta $$
(A.7)
$$ \tilde{p}=5r \cos \theta +\frac{\tilde{\rho}g{R}^2}{\tilde{\eta}{U}_0}r \cos \theta +\delta p $$
(A.8)

A. 2. The terms in order of De1

$$ {u}_{r,1}=-\frac{3}{20}\frac{\beta k}{{\left(k+1\right)}^2}\left(\frac{1}{r^2}-\frac{1}{r^4}\right)\left(3{ \cos}^2\theta -1\right)\left(3-\alpha \right) $$
(A.9)
$$ {\tilde{u}}_{r,1}=\frac{3}{20}\frac{\beta k}{k+1}\left(r-{r}^3\right)\left(3{ \cos}^2\theta -1\right)\left(3-\alpha \right) $$
(A.10)
$$ {u}_{\theta, 1}=\frac{3}{10}\left(3-\alpha \right)\frac{k\beta }{{\left(k+1\right)}^2{r}^4} \sin \theta \cos \theta $$
(A.11)
$$ {\tilde{u}}_{\theta, 1}=\frac{3}{20}\frac{k\beta }{k+1}\left(3-\alpha \right)\left(-3r+5{r}^3\right) \sin \theta \cos \theta $$
(A.12)
$$ {p}_1=-\frac{3}{10}\left(3-\alpha \right)\frac{k\beta }{{\left(k+1\right)}^2}\frac{\left(3{ \cos}^2\theta -1\right)}{r^3} $$
(A.13)
$$ {\tilde{p}}_1=-\frac{21}{20}\left(3-\alpha \right)\frac{k\beta }{k+1}r\left(3{ \cos}^2\theta -1\right) $$
(A.14)
$$ \begin{array}{l}{\tau_1}_{,rr}=-\frac{3}{5}\frac{\beta k\left(6-3{r}^2-2\alpha +\alpha {r}^2\right)}{{\left(k+1\right)}^2{r}^5}\left(3{ \cos}^2\theta -1\right)\\ {}{\tau_1}_{,r\theta }={\tau_1}_{,\theta r}=-\frac{3}{10}\frac{k\beta \left(24-9{r}^2-8\alpha +3\alpha {r}^2\right)}{{\left(k+1\right)}^2{r}^5} \sin \theta \cos \theta \\ {}{\tau_1}_{,r\phi }={\tau_1}_{,\phi r}=0\\ {}{\tau_1}_{,\theta \theta }=\frac{3}{10}\frac{k\beta \left(3-7{ \cos}^2\theta +3{r}^2{ \cos}^2\theta -{r}^2\right)}{{\left(k+1\right)}^2{r}^5}\left(-3+\alpha \right)\\ {}{\tau_1}_{,\theta \phi }={\tau_1}_{,\phi \theta }=0\\ {}{\tau_1}_{,\phi \phi }=\frac{3}{10}k\beta \Big(15{ \cos}^2\theta -9{r}^2{ \cos}^2\theta -5\alpha { \cos}^2\theta +\\ {}\kern2.64em 3\alpha {r}^2{ \cos}^2\theta -3+3{r}^2+\alpha -\alpha {r}^2\Big)/{\left(k+1\right)}^2{r}^5\\ {}\end{array} $$
(A.15)
$$ \begin{array}{l}{\tilde{\tau}}_{1,rr}=\frac{1}{20}\beta \Big(-10+84k{ \cos}^2\theta -92k{r}^2{ \cos}^2\theta -18k\alpha { \cos}^2\theta +\\ {}\kern3em 19k\alpha {r}^2{ \cos}^2\theta +30{ \cos}^2\theta +70{r}^2{ \cos}^2\theta -35\alpha {r}^2{ \cos}^2\theta \\ {}\kern3.12em -28k+44k{r}^2+6k\alpha -63k\alpha {r}^2-10{r}^2-45\alpha {r}^2\Big)/\left(k+1\right)\\ {}{\tilde{\tau}}_{1,r\theta }={\tilde{\tau}}_{1,\theta r}=-\frac{3}{10}\frac{\beta \cos \theta \sin \theta \left(14k-14k{r}^2-3k\alpha +3k\alpha {r}^2+5+10{r}^2-5\alpha {r}^2\right)}{k+1}\\ {}{\tilde{\tau}}_{1,r\phi }={\tilde{\tau}}_{1,\phi r}=0\\ {}{\tilde{\tau}}_{1,\theta \theta }=-\frac{1}{20}\beta \Big(-20-76k{r}^2{ \cos}^2\theta +17k\alpha {r}^2{ \cos}^2\theta +84k{ \cos}^2\theta -\\ {}\kern3.48em 18k\alpha { \cos}^2\theta +30{ \cos}^2\theta +50{r}^2{ \cos}^2\theta -25\alpha {r}^2{ \cos}^2\theta -\\ {}\kern3.48em 56k+12k\alpha -80{r}^2-8k{r}^2+21k\alpha {r}^2+45\alpha {r}^2\;\Big)/\left(k+1\right)\\ {}{\tilde{\tau}}_{1,\theta \phi }={\tilde{\tau}}_{1,\phi \theta }=0\\ {}{\tilde{\tau}}_{1,\phi \phi }=-\frac{1}{10}\beta \Big(-23k{r}^2{ \cos}^2\theta +16k\alpha {r}^2{ \cos}^2\theta -19k{r}^2+14k-3k\alpha +\\ {}3k\alpha {r}^2+5-10{r}^2-5{r}^2{ \cos}^2\theta +10\alpha {r}^2{ \cos}^2\theta \Big)/\left(k+1\right)\\ {}\end{array} $$
(A.16)

A. 3. The terms in order of DeCa

$$ \begin{array}{l}{u_r}^{(1)}=\frac{3}{140}\frac{\alpha_2}{k+1}\left(\frac{21k+18}{r}-\frac{21k+4}{r^3}\right)\left(10{ \cos}^2\theta -6\right) \sin \theta \cos \theta \\ {}-\frac{\alpha_2}{10{\left(k+1\right)}^2}\left(\frac{3{k}^2-k+8}{r}-\frac{3{k}^2-3k+6}{r^3}\right) \cos \theta \end{array} $$
(A.17)
$$ {{\tilde{u}}_r}^{(1)}=\frac{-{\alpha}_2}{5k+5}\left(\left(4-2k\right){r}^2+\left(3k-3\right)\right) \cos \theta -\frac{3{\alpha}_2}{70}\left(5{r}^4-12{r}^2\right)\left(10{ \cos}^2\theta -6\right) \sin \theta \cos \theta $$
(A.18)
$$ \begin{array}{l}{u_{\theta}}^{(1)}=\frac{1}{20}\frac{\alpha_2}{{\left(k+1\right)}^2}\left(\frac{3{k}^2-k+8}{r}+\frac{3{k}^2-3k+6}{r^3}\right) \sin \theta \\ {}-\frac{3}{280}\frac{\alpha_2}{\left(k+1\right)}\left(-\frac{21k+18}{r^3}+\frac{3\left(21k+4\right)}{r^5}\right) \sin \theta \left(5{ \cos}^2\theta -1\right)\end{array} $$
(A.19)
$$ \begin{array}{l}{{\tilde{u}}_{\theta}}^{(1)}=\frac{\alpha_2}{5\left(k+1\right)}\left(\left(8-4k\right){r}^2+\left(3k-3\right)\right) \sin \theta +\\ {}\frac{3{\alpha}_2}{140}\left(30{r}^4-48{r}^2\right) \sin \theta \left(5{ \cos}^2\theta -1\right)\end{array} $$
(A.20)
$$ \begin{array}{l}{p}^{(1)}=\frac{1}{140}\frac{\alpha^2{ \cos}^2\theta }{{\left(k+1\right)}^2{r}^4}\Big(-112{r}^2+14{r}^2k-42{r}^2{k}^2+1350{ \cos}^2\theta +2925k{ \cos}^2\theta \\ {}+1575{k}^2{ \cos}^2\theta -810-945{k}^2-1755k\Big)\end{array} $$
(A.21)
$$ {\tilde{p}}^{(1)}=-\frac{2}{7}\frac{\alpha_2r \cos \theta }{k+1}\left(45{r}^2k{ \cos}^2\theta +45{r}^2{ \cos}^2\theta +28-27{r}^2-14k-27{r}^2k\right) $$
(A.22)
$$ \begin{array}{l}{\tau_{rr}}^{(1)}=-\frac{1}{35}{\alpha}_2 \cos \theta \Big(180+810{r}^2{ \cos}^2\theta -360{r}^2-56{r}^4+945{r}^2{k}^2{ \cos}^2\theta \\ {}-1116k{r}^2-504{r}^2{k}^2+1125k+945{k}^2+7k{r}^4-21{k}^2{r}^4-300{ \cos}^2\theta \\ {}-1557{k}^2{ \cos}^2\theta -1875k{ \cos}^2\theta +1755k{r}^2{ \cos}^2\theta \Big)/\left({r}^6{\left(k+1\right)}^2\right)\\ {}{\tau_{r\theta}}^{(1)}={\tau_{\theta r}}^{(1)}=-\frac{9}{140}{\alpha}_2 \sin \theta \Big(-20{r}^2+520k{r}^2{ \cos}^2\theta +280{r}^2{k}^2{ \cos}^2\theta \\ {}-118k{r}^2+240{r}^2{ \cos}^2\theta -525{k}^2{ \cos}^2\theta -625k{ \cos}^2\theta -42{r}^2{k}^2+125k\\ {}+105{k}^2+20-100{ \cos}^2\theta \Big)/\left({r}^6{\left(k+1\right)}^2\right)\\ {}{\tau_{r\phi}}^{(1)}={\tau_{\phi r}}^{(1)}=0\\ {}{\tau_{\theta \theta}}^{(1)}=\frac{1}{140}\Big(540-990{r}^2-112{r}^4-2817k{r}^2-1323{r}^2{k}^2+3375k\\ {}+2835{k}^2+1890{r}^2{ \cos}^2\theta -4095{k}^2{ \cos}^2\theta -4875k{ \cos}^2\theta +4095k{r}^2{ \cos}^2\theta \\ {}+2205{r}^2{k}^2{ \cos}^2\theta -780{ \cos}^2\theta +14{r}^4k-42{r}^4{k}^2\Big){\alpha}_2 \cos \theta /\left({r}^6{\left(k+1\right)}^2\right)\\ {}{\tau_{\theta \phi}}^{(1)}={\tau_{\phi \theta}}^{(1)}=0\\ {}{\tau_{\phi \phi}}^{(1)}=\frac{1}{140}{\alpha}_2 \cos \theta \Big(180-420{ \cos}^2\theta +1575{r}^2{k}^2{ \cos}^2\theta +14k{r}^4-42{k}^2{r}^4\\ {}+2925k{r}^2{ \cos}^2\theta -693{r}^2{k}^2-1647k{r}^2-112{r}^4+1125k+945{k}^2\\ {}+1350{r}^2{ \cos}^2\theta -450{r}^2-2205{k}^2{ \cos}^2\theta -2625k{ \cos}^2\theta \left)/\right({r}^6{\left(k+1\right)}^2\end{array} $$
(A.23)
$$ \begin{array}{l}{{\tilde{\tau}}_{rr}}^{(1)}=-\frac{8}{35}{\alpha}_2r \cos \theta \Big(-45{r}^2+75{r}^2{ \cos}^2\theta -90k{ \cos}^2\theta -90{ \cos}^2\theta \\ {}+75k{r}^2{ \cos}^2\theta +47k+68-45{r}^2k\Big)/\left(k+1\right)\\ {}{{\tilde{\tau}}_{r\theta}}^{(1)}={{\tilde{\tau}}_{\theta r}}^{(1)}=\frac{3}{70}r{\alpha}_2 \sin \theta \Big(152+68k+375k{r}^2{ \cos}^2\theta +375{r}^2{ \cos}^2\theta \\ {}-75k{r}^2-75{r}^2-480k{ \cos}^2\theta -480{ \cos}^2\theta \Big)/\left(k+1\right)\\ {}{{\tilde{\tau}}_{r\phi}}^{(1)}={{\tilde{\tau}}_{\phi r}}^{(1)}=0\\ {}{{\tilde{\tau}}_{\theta \theta}}^{(1)}=\frac{1}{35}r{\alpha}_2 \cos \theta \Big(525k{r}^2{ \cos}^2\theta +525{r}^2{ \cos}^2\theta -405{r}^2-405{r}^2k\\ {}+548k+632-720k{ \cos}^2\theta -720{ \cos}^2\theta \Big)/\left(k+1\right)\\ {}{{\tilde{\tau}}_{\theta \phi}}^{(1)}={{\tilde{\tau}}_{\phi \theta}}^{(1)}=0\\ {}{{\tilde{\tau}}_{\phi \phi}}^{(1)}=\frac{1}{35}r{\alpha}_2 \cos \theta \left(45{r}^2+75{r}^2{ \cos}^2\theta +75k{r}^2{ \cos}^2\theta -172k-88+45k{r}^2\right)/\left(k+1\right)\end{array} $$
(A.24)

A. 4. The terms in order of De2

$$ {u}_{r,2}=\frac{1}{2}\frac{\left(-5{A}_3{ \cos}^2\theta -5{B}_3{r}^2{ \cos}^2\theta +3{A}_3+3{B}_3{r}^2-2{A}_1{r}^2+2{A}_1{r}^4\right)}{r^5} cos\theta $$
(A.25)
$$ {\tilde{u}}_{r,2}=\frac{1}{2}\left({C}_3{r}^2\left(-5{ \cos}^2\theta +3\right)+2a\left(1+{r}^2\right)-2{C}_1\right)\left(1-{r}^2\right) \cos \theta $$
(A.26)
$$ {u}_{\theta, 2}=-\frac{1}{2}{A}_1\left(\frac{1}{r^3}+\frac{1}{r}\right) \sin \theta -\frac{1}{8}{A}_3\left(\frac{3}{r^5}-\frac{1}{r^3}\right) \sin \theta \left(5{ \cos}^2\theta -1\right) $$
(A.27)
$$ {\tilde{u}}_{\theta, 2}=\frac{1}{2}\left(a\left(6{r}^4-2\right)+{C}_1\left(2+4{r}^2\right)\right) \sin \theta +\frac{1}{8}{C}_3\left(4{r}^2-6{r}^4\right) \sin \theta \left(5{ \cos}^2\theta -1\right) $$
(A.28)
$$ \begin{array}{l}{p}_2=-\frac{1}{1400}\frac{\beta k}{{\left(k+1\right)}^3{r}^4}\Big(8550-6525\alpha +1350k{\alpha}^2+8550k-14250{ \cos}^2\theta -\\ {}6525k\alpha +1350{\alpha}^2-1440\beta k{\alpha}^2-15930\beta k-238\beta k{\alpha}^2{r}^2+798\beta k\alpha {r}^2-\\ {}500{r}^2+9630\beta k\alpha -252\beta k{r}^2-5355k\alpha {r}^2+3465k{\alpha}^2{r}^2+3465{\alpha}^2{r}^2-\\ {}5355\alpha {r}^2-500k{r}^2+10875\alpha { \cos}^2\theta -2250{\alpha}^2{ \cos}^2\theta -14250k{ \cos}^2\theta +\\ {}26550\beta k{ \cos}^2\theta -2250k{\alpha}^2{ \cos}^2\theta +10875k\alpha { \cos}^2\theta -16050\beta k\alpha { \cos}^2\theta +\\ {}2400\beta k{\alpha}^2{ \cos}^2\theta \Big) \cos \theta \end{array} $$
(A.29)
$$ \begin{array}{l}{\tilde{p}}_2=\frac{1}{2800}\frac{\beta r \cos \theta }{{\left(k+1\right)}^2}\Big(-1700-1680{r}^2+6090\beta {k}^2{\alpha}^2+3400k+13580\beta k\alpha {r}^2{ \cos}^2\theta -\\ {}1540\beta k{\alpha}^2{r}^2{ \cos}^2\theta -3150\beta k\alpha -7560\beta k+19656\beta k{r}^2+7700{r}^2{ \cos}^2\theta +\\ {}42750k\alpha {r}^2{ \cos}^2\theta +37680k{r}^2+60200k\alpha -60700{k}^2{r}^2{ \cos}^2\theta -41050k\alpha {r}^2-\\ {}53000k{r}^2{ \cos}^2\theta +3150{\alpha}^2-17150\alpha -4074\beta k{\alpha}^2{r}^2-4865\alpha {r}^2+11835{k}^2{\alpha}^2{r}^2-\\ {}56808\beta {k}^2{r}^2-36185\;{k}^2\alpha {r}^2-4725\alpha {r}^2{ \cos}^2\theta -63460\beta \alpha {k}^2{r}^2{ \cos}^2\theta +17190k{\alpha}^2{r}^2+\\ {}9980\beta {k}^2{\alpha}^2{r}^2{ \cos}^2\theta +1890\beta k{\alpha}^2+77350\alpha {k}^2-16310\beta \alpha {k}^2-58800k{\alpha}^2+5670\beta k\alpha {r}^2-\\ {}61950{k}^2{\alpha}^2+875{\alpha}^2{r}^2{ \cos}^2\theta -9925{k}^2{\alpha}^2{r}^2{ \cos}^2\theta +47475\alpha {k}^2{r}^2{ \cos}^2\theta +5100{k}^2+\\ {}100560\beta {k}^2{r}^2{ \cos}^2\theta -5880\beta {k}^2-26880\beta k{r}^2{ \cos}^2\theta -9050k{\alpha}^2{r}^2{ \cos}^2\theta +5355{\alpha}^2{r}^2-\\ {}10986\beta {k}^2{\alpha}^2{r}^2+51894\beta \alpha {k}^2{r}^2+39360{r}^2{k}^2\Big)\end{array} $$
(A.30)
$$ \begin{array}{c}\hfill \begin{array}{l}{\tau_2}_{,rr}=-\frac{1}{175}\beta k \cos \theta \Big(-17100-21750k\alpha { \cos}^2\theta -19872k\beta {r}^2-17100k-\\ {}17100k{r}^2{ \cos}^2\theta +8760{r}^2+500{r}^4-2700{\alpha}^2{r}^2{ \cos}^2\theta -2700k{\alpha}^2-19260k\beta \alpha -\\ {}53100k\beta { \cos}^2\theta +12015k{\alpha}^2{r}^2+4500{\alpha}^2{ \cos}^2\theta +5355k\alpha {r}^4-3465{\alpha}^2{r}^4+500k{r}^4+\\ {}13050\alpha {r}^2{ \cos}^2\theta -23895k\alpha {r}^2+2880k\beta {\alpha}^2+28500{ \cos}^2\theta -23895\alpha {r}^2+\\ {}8760k{r}^2+13050k\alpha +28500k{ \cos}^2\theta +31860k\beta -21750\alpha { \cos}^2\theta -17100{r}^2{ \cos}^2\theta +\\ {}12015{\alpha}^2{r}^2+13050\alpha +4500k{\alpha}^2{ \cos}^2\theta -7981k\beta \alpha {r}^4+238k\beta {\alpha}^2{r}^4-2700{\alpha}^2-\\ {}19260k\beta \alpha {r}^2{ \cos}^2\theta +2880k\beta {\alpha}^2{r}^2{ \cos}^2\theta -2442k\beta {\alpha}^2{r}^2+31860k\beta {r}^2{ \cos}^2\theta -\\ {}2700k{\alpha}^2{r}^2{ \cos}^2\theta +13950k\beta \alpha {r}^2+32100k\beta \alpha { \cos}^2\theta -4800k\beta {\alpha}^2{ \cos}^2\theta +\\ {}13050k\alpha {r}^2{ \cos}^2\theta +252k\beta {r}^4+5355\alpha {r}^4-3465k{\alpha}^2{r}^4\Big)/\left({r}^6{\left(k+1\right)}^3\right)\end{array}\hfill \\ {}\hfill \begin{array}{l}{\tau_2}_{,r\theta }={\tau_2}_{,\theta r}=-\frac{3}{1400}\beta k \sin \theta \Big(-2850k-3084\beta k{r}^2-2850-10875k\alpha { \cos}^2\theta -\\ {}7600k{r}^2{ \cos}^2\theta +1020{r}^2-1200{\alpha}^2{r}^2{ \cos}^2\theta -450k{\alpha}^2-3210k\beta \alpha +480k\beta {\alpha}^2-\\ {}26550k\beta { \cos}^2\theta +3705k{\alpha}^2{r}^2+2250{\alpha}^2{ \cos}^2\theta +5800\alpha {r}^2{ \cos}^2\theta -6515k\alpha {r}^2+\\ {}14250{ \cos}^2\theta -6515\alpha {r}^2+1020k{r}^2+2175k\alpha +14250k{ \cos}^2\theta +5310k\beta -\\ {}10875\alpha { \cos}^2\theta -7600{r}^2{ \cos}^2\theta +3705{\alpha}^2{r}^2+2175\alpha +2250k{\alpha}^2{ \cos}^2\theta -450{\alpha}^2-\\ {}8560k\beta \alpha {r}^2{ \cos}^2\theta +1280k\beta {\alpha}^2{r}^2{ \cos}^2\theta -494k\beta {\alpha}^2{r}^2+14160k\beta {r}^2{ \cos}^2\theta -\\ {}1200k{\alpha}^2{r}^2{ \cos}^2\theta +2510k\beta \alpha {r}^2+16050k\beta \alpha { \cos}^2\theta -2400k\beta {\alpha}^2{ \cos}^2\theta +\\ {}5800k\alpha {r}^2{ \cos}^2\theta \Big)/\left({r}^6{\left(k+1\right)}^3\right)\\ {}{\tau_2}_{,r\phi }={\tau_2}_{,\phi r}=0\\ {}{\tau_2}_{,\theta \theta }=\frac{\beta k \cos \theta }{1400}\Big(-25650-25650k-25182\beta k{r}^2+47790\beta k+11610k{r}^2+\\ {}500{r}^4-28275k\alpha { \cos}^2\theta -19950k{r}^2{ \cos}^2\theta +11610{r}^2-3150{\alpha}^2{r}^2{ \cos}^2\theta -\\ {}4050k{\alpha}^2+500k{r}^4-28890k\beta \alpha -69030k\beta { \cos}^2\theta +12465k{\alpha}^2{r}^2+5850{\alpha}^2{ \cos}^2\theta +\\ {}5355k\alpha {r}^4-3465{\alpha}^2{r}^4+15225\alpha {r}^2{ \cos}^2\theta -26070k\alpha {r}^2+4320k\beta {\alpha}^2+37050{ \cos}^2\theta -\\ {}26070\alpha {r}^2+19575k\alpha +37050k{ \cos}^2\theta -28275\alpha { \cos}^2\theta -19950{r}^2{ \cos}^2\theta +12465{\alpha}^2{r}^2+\\ {}19575\alpha +5850k{\alpha}^2{ \cos}^2\theta -798k\beta \alpha {r}^4+238k\beta {\alpha}^2{r}^4-4050{\alpha}^2-22470k\beta \alpha {r}^2{ \cos}^2\theta +\\ {}3360k\beta {\alpha}^2{r}^2{ \cos}^2\theta +17160k\beta {r}^4-2922k\beta {\alpha}^2{r}^2+37170k\beta {\alpha}^2{ \cos}^2\theta -3150k{\alpha}^2{r}^2{ \cos}^2\theta +\\ {}41730k\beta \alpha { \cos}^2\theta -6240k\beta {\alpha}^2{ \cos}^2\theta +15225k\alpha {r}^2{ \cos}^2\theta +252k\beta {r}^4+5355\alpha {r}^4-\\ {}3465k{\alpha}^2{r}^4\Big)/\left({r}^6{\left(k+1\right)}^3\right)\\ {}{\tau_2}_{,\theta \phi }={\tau_2}_{,\phi \theta }=0\\ {}{\tau_2}_{,\phi \phi }=\frac{1}{700}\beta k \cos \theta \Big(-8550-15225k\alpha { \cos}^2\theta -14562k\beta {r}^2-8550k-14250k{r}^2{ \cos}^2\theta +\\ {}5910{r}^2+500{r}^4-2250{\alpha}^2{r}^2{ \cos}^2\theta -1350k{\alpha}^2-9630k\beta \alpha -37170\beta k{ \cos}^2\theta +\\ {}11565k{\alpha}^2{r}^2+3150{\alpha}^2{ \cos}^2\theta +5355k\alpha {r}^4-3465{\alpha}^2{r}^4+500k{r}^4+10875\alpha {r}^2{ \cos}^2\theta -\\ {}21720k\alpha {r}^2+1440k\beta {\alpha}^2+19950{ \cos}^2\theta -21720\alpha {r}^2+5910k{r}^2+6525k\alpha +19950k{ \cos}^2\theta +\\ {}15930k\beta -15225\alpha { \cos}^2\theta -14250{r}^2{ \cos}^2\theta +11565{\alpha}^2{r}^2+6525\alpha +3150k{\alpha}^2{ \cos}^2\theta -\\ {}798k\beta \alpha {r}^4+238k\beta {\alpha}^2{r}^4-1350{\alpha}^2-16050k\beta \alpha {r}^2{ \cos}^2\theta +2400k\beta {\alpha}^2{r}^2{ \cos}^2\theta -\\ {}1962k\beta {\alpha}^2{r}^2+26550k\beta {r}^2{ \cos}^2\theta -2250k{\alpha}^2{r}^2{ \cos}^2\theta +10740k\beta \alpha {r}^2+22470k\beta \alpha { \cos}^2\theta -\\ {}3360k\beta {\alpha}^2{ \cos}^2\theta +10875k\alpha {r}^2{ \cos}^2\theta +252k\beta {r}^4+5355\alpha {r}^4-3465k{\alpha}^2{r}^4\Big)/\left({r}^6{\left(k+1\right)}^3\right)\end{array}\hfill \end{array} $$
(A.31)
$$ \begin{array}{l}{\tilde{\tau}}_{2,rr}=\frac{1}{700}\beta r \cos \theta \Big(-1510-12900k\alpha { \cos}^2\theta +8568k\beta {r}^2-8860k-\\ {}12300k{r}^2{ \cos}^2\theta -3390{r}^2+1750{\alpha}^2{r}^2{ \cos}^2\theta -8640k{\alpha}^2-3780k\beta \alpha -\\ {}1260k\beta { \cos}^2\theta -8325{k}^2{\alpha}^2+21690k{\alpha}^2{r}^2-17550{k}^2{r}^2{ \cos}^2\theta +\\ {}13375{k}^2\alpha -6125\alpha {r}^2{ \cos}^2\theta -1850{k}^2{\alpha}^2{r}^2{ \cos}^2\theta -22480k\alpha {r}^2+\\ {}1092k\beta {\alpha}^2+5250{ \cos}^2\theta -6020\alpha {r}^2+6900k{r}^2+10820k\alpha +1512k\beta +\\ {}21900k{ \cos}^2\theta -2100\alpha { \cos}^2\theta +5250{r}^2{ \cos}^2\theta +9765{\alpha}^2{r}^2-2555\alpha +\\ {}1800k{\alpha}^2{ \cos}^2\theta +11925{k}^2{\alpha}^2{r}^2-315{\alpha}^2+13860k\alpha \beta {r}^2{ \cos}^2\theta -\\ {}2520k\beta {\alpha}^2{r}^2{ \cos}^2\theta -2562k\beta {\alpha}^2{r}^2-18900k\beta {r}^2{ \cos}^2\theta -100k{\alpha}^2{r}^2{ \cos}^2\theta +\\ {}4830k\beta \alpha {r}^2-1470k\beta \alpha { \cos}^2\theta +630k\beta {\alpha}^2{ \cos}^2\theta +5150k\alpha {r}^2{ \cos}^2\theta -\\ {}10800{k}^2\alpha { \cos}^2\theta +1800{k}^2{\alpha}^2{ \cos}^2\theta +16650{k}^2{ \cos}^2\theta -16920{k}^2\beta {r}^2+\\ {}10290{r}^2{k}^2-13080{k}^2\beta \alpha +2720{k}^2\beta {\alpha}^2-22500{k}^2\beta { \cos}^2\theta -\\ {}11820{k}^2\beta \alpha {r}^2{ \cos}^2\theta +1320\beta {k}^2{\alpha}^2{r}^2{ \cos}^2\theta +20238\beta \alpha {k}^2{r}^2-7350{k}^2-\\ {}4866{k}^2\beta {\alpha}^2{r}^2+11275{k}^2\alpha {r}^2{ \cos}^2\theta +23580\beta {k}^2{r}^2{ \cos}^2\theta -16460\alpha {k}^2{r}^2+\\ {}11370{k}^2\beta \alpha { \cos}^2\theta -1290{k}^2\beta {\alpha}^2{ \cos}^2\theta +14760{k}^2\beta \Big)/{\left(k+1\right)}^2\\ {}{\tilde{\tau}}_{2,r\theta }={\tilde{\tau}}_{2,\theta r}=-\frac{3}{2800}\beta r \sin \theta \Big(-1860-17200k\alpha { \cos}^2\theta +5880k\beta {r}^2-5760k-\\ {}15900k{r}^2{ \cos}^2\theta -1800{r}^2+2100{\alpha}^2{r}^2{ \cos}^2\theta -8040k{\alpha}^2-910k\beta \alpha -455\alpha -\\ {}1680k\beta { \cos}^2\theta -7725{k}^2{\alpha}^2+14550k{\alpha}^2{r}^2-22200{k}^2{r}^2{ \cos}^2\theta +12575{k}^2\alpha -\\ {}7350\alpha {r}^2{ \cos}^2\theta -2400{k}^2{\alpha}^2{r}^2{ \cos}^2\theta -20800k\alpha {r}^2+462k\beta {\alpha}^2+700{ \cos}^2\theta -\\ {}8225\alpha {r}^2+2100k{r}^2+12120k\alpha +29200k{ \cos}^2\theta -1428k\beta -2800\alpha { \cos}^2\theta +\\ {}6300{r}^2{ \cos}^2\theta +6825{\alpha}^2{r}^2+2400k{\alpha}^2{ \cos}^2\theta +7725{k}^2{\alpha}^2{r}^2-315{\alpha}^2-3900{k}^2+\\ {}16940k\beta \alpha {r}^2{ \cos}^2\theta -3080k\beta {\alpha}^2{r}^2{ \cos}^2\theta -490k\beta {\alpha}^2{r}^2-23100k\beta {r}^2{ \cos}^2\theta -\\ {}300k{\alpha}^2{r}^2{ \cos}^2\theta -490k\beta \alpha {r}^2-1960k\beta \alpha { \cos}^2\theta +840k\beta {\alpha}^2{ \cos}^2\theta +\\ {}7050\alpha k{r}^2{ \cos}^2\theta -14400{k}^2\alpha { \cos}^2\theta +2400{k}^2{\alpha}^2{ \cos}^2\theta +22200{k}^2{ \cos}^2\theta -\\ {}4740\beta {k}^2{r}^2+3900{r}^2{k}^2-5930{k}^2\beta \alpha +1450{k}^2\beta {\alpha}^2-30000{k}^2\beta { \cos}^2\theta -\\ {}15160{k}^2\beta \alpha {r}^2{ \cos}^2\theta +1720\beta {k}^2{\alpha}^2{r}^2{ \cos}^2\theta +5930\beta \alpha {k}^2{r}^2-1450{k}^2\beta {\alpha}^2{r}^2+\\ {}14400{k}^2\alpha {r}^2{ \cos}^2\theta +30000{k}^2\beta {r}^2{ \cos}^2\theta -12575{k}^2\alpha {r}^2+15160{k}^2\beta \alpha { \cos}^2\theta -\\ {}1720{k}^2\beta {\alpha}^2{ \cos}^2\theta +4740{k}^2\beta \Big)/{\left(k+1\right)}^2\\ {}{\tilde{\tau}}_{2,r\phi }={\tilde{\tau}}_{2,\phi r}=0\end{array} $$
(A.32)
$$ \begin{array}{l}{\tilde{\tau}}_{2,\theta \theta }=-\frac{1}{1400}\beta r \cos \theta \Big(-13060-25800k\alpha { \cos}^2\theta +43848k\beta {r}^2-42360k-\\ {}23100k{r}^2{ \cos}^2\theta -4440{r}^2+2800{\alpha}^2{r}^2{ \cos}^2\theta -10440k{\alpha}^2+7770k\beta \alpha -\\ {}2520k\beta { \cos}^2\theta -10125{k}^2{\alpha}^2+5490k{\alpha}^2{r}^2-31500{k}^2{r}^2{ \cos}^2\theta +32575{k}^2\alpha -\\ {}9800\alpha {r}^2{ \cos}^2\theta -3500{k}^2{\alpha}^2{r}^2{ \cos}^2\theta -19780k\alpha {r}^2-2058k\beta {\alpha}^2+10500{ \cos}^2\theta +\\ {}1855\alpha {r}^2+21900k{r}^2+40520k\alpha +43800k{ \cos}^2\theta -4788k\beta -4200\alpha { \cos}^2\theta +\\ {}8400{r}^2{ \cos}^2\theta +315{\alpha}^2{r}^2+7945\alpha +3600k{\alpha}^2{ \cos}^2\theta +5175{k}^2{\alpha}^2{r}^2-315{\alpha}^2+\\ {}23100k\beta \alpha {r}^2{ \cos}^2\theta -4200k\beta {\alpha}^2{r}^2{ \cos}^2\theta +6678k\beta {\alpha}^2{r}^2-31500k\beta {r}^2{ \cos}^2\theta -\\ {}700k{\alpha}^2{r}^2{ \cos}^2\theta -34650k\beta \alpha {r}^2-2940k\beta \alpha { \cos}^2\theta -1260k\beta {\alpha}^2{ \cos}^2\theta +\\ {}10850k\alpha {r}^2{ \cos}^2\theta -21600{k}^2\alpha { \cos}^2\theta +3600{k}^2{\alpha}^2{ \cos}^2\theta +33300{k}^2{ \cos}^2\theta -\\ {}13500\beta {k}^2{r}^2+26340{r}^2{k}^2-14370\beta \alpha {k}^2+1490\beta {\alpha}^2{k}^2-4500\beta {k}^2{ \cos}^2\theta -\\ {}21840{k}^2\beta \alpha {r}^2+2520\beta {\alpha}^2{r}^2{ \cos}^2\theta +18\beta \alpha {k}^2{r}^2+1494\beta {k}^2{\alpha}^2{r}^2-30300{k}^2+\\ {}20650{k}^2\alpha {r}^2{ \cos}^2\theta +42840\beta {k}^2{r}^2{ \cos}^2\theta -21635{k}^2\alpha {r}^2+22740\alpha \beta {k}^2{ \cos}^2\theta -\\ {}2580\beta {k}^2{\alpha}^2{ \cos}^2\theta +29700\beta {k}^2\Big)/{\left(k+1\right)}^2\\ {}{\tilde{\tau}}_{2,\theta \phi }={\tilde{\tau}}_{2,\phi \theta }=0\\ {}{\tilde{\tau}}_{2,\phi \phi }=-\frac{1}{1400}\beta r \cos \theta \Big(-3560+11088k\beta {r}^2+440k-5700k{r}^2{ \cos}^2\theta +3960{r}^2+\\ {}2800{\alpha}^2{r}^2{ \cos}^2\theta -6840k{\alpha}^2+4830k\beta \alpha -6525{k}^2{\alpha}^2+90k{\alpha}^2{r}^2-5700{k}^2{r}^2{ \cos}^2\theta +\\ {}10975{k}^2\alpha -1400\alpha {r}^2{ \cos}^2\theta +1900{k}^2{\alpha}^2{r}^2{ \cos}^2\theta -10480k\alpha {r}^2-798k\beta {\alpha}^2-6545\alpha {r}^2+\\ {}4500k{r}^2+14720k\alpha -7308k\beta +315{\alpha}^2{r}^2+3745\alpha -225{\alpha}^2{k}^2{r}^2-315{\alpha}^2+798k\beta {\alpha}^2{r}^2-\\ {}5460k\beta \alpha {r}^2{ \cos}^2\theta +1680k\beta {\alpha}^2{r}^2{ \cos}^2\theta +1260k\beta {r}^2{ \cos}^2\theta +4700k{\alpha}^2{r}^2{ \cos}^2\theta -6090k\beta \alpha {r}^2+\\ {}1550k\alpha {r}^2{ \cos}^2\theta +17460{k}^2\beta {r}^2+540{r}^2{k}^2+8370\beta \alpha {k}^2-1090{k}^2\beta {\alpha}^2-11880{k}^2\beta \alpha {r}^2{ \cos}^2\theta +\\ {}2640{k}^2\beta {\alpha}^2{r}^2{ \cos}^2\theta -9942{k}^2\beta \alpha {r}^2+1374{k}^2\beta {\alpha}^2{r}^2+2950{k}^2\alpha {r}^2{ \cos}^2\theta -15300{k}^2\beta +\\ {}11880{k}^2\beta {r}^2{ \cos}^2\theta -3935{k}^2\alpha {r}^2+3000{k}^2\Big)/{\left(k+1\right)}^2\end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vamerzani, B.Z., Norouzi, M. & Firoozabadi, B. Theoretical and experimental study on the motion and shape of viscoelastic falling drops through Newtonian media. Rheol Acta 55, 935–955 (2016). https://doi.org/10.1007/s00397-016-0965-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0965-0

Keywords

Navigation