Skip to main content
Log in

Rheological characterization of triglyceride shortenings

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological properties of shortenings with similar physicochemical characteristics but diverse functionality were investigated under small and large oscillatory shear. Particular attention was drawn to the mechanical behavior of roll-in shortenings, characterized for resisting work softening and forming continuous fat thin films during dough lamination and sheeting. All shortenings displayed low-frequency dependence, reminiscent of viscoelastic solids where the storage modulus is higher than the loss modulus, and displayed a comparable linear envelope, encompassing relatively small shear strains, such as those encountered in other fat systems. Linear elastic moduli and yield stress, previously used to designate roll-in functionality, remained unremarkable. In contrast, nonlinear viscoelastic behavior of roll-in shortenings differed considerably from all-purpose commercial shortenings. Lissajous–Bowditch curves suggested less local intracycle strain stiffening and less average intercycle strain softening for roll-in shortenings than other shortenings. Likewise, their Fourier spectra indicated a gradual evolution of the third harmonic into the nonlinear regime characterized by higher slopes. The third and fifth harmonics grew monotonically, and the third overtone leveled off and showed no stress decays unlike other samples, suggesting a marked ability of roll-in shortenings to withstand deformation at high stresses. Conversely, the dissipative energy scaled in a similar fashion for all shortenings. Moreover, roll-in shortenings displayed enhanced thixotropic behavior supported by lower power law indexes and prompt structural rebuilding after steady shear cessation. Overall, these rheological signatures facilitated the differentiation among the utilization of shortenings and correlated well with the functionality of roll-in shortenings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acevedo NC, Marangoni AG (2010a) Characterization of the nanoscale in triacylglycerol crystal networks. Cryst Growth Des 10(8):3327–3333

  • Acevedo NC, Marangoni AG (2010b) Toward nanoscale engineering of triacylglycerol crystal networks. Cryst Growth Des 10(8):3334–3339

  • Acevedo NC, Marangoni AG (2014) Functionalization of non-interesterified mixtures of fully hydrogenated fats using shear processing. Food Bioprocess Technol 7(2):575–587

    Article  Google Scholar 

  • Acevedo NC, Peyronel F, Marangoni AG (2011) Nanoscale structure intercrystalline interactions in fat crystal networks. Curr Opin Colloid Interface Sci 16(5):374–383

  • Allegra G, Raos G, Vacatello M (2008) Theories and simulations of polymer-based nanocomposites: from chain statistics to reinforcement. Prog Polym Sci 33(7):683–731

    Article  Google Scholar 

  • Astrup A, Dyerberg J, Elwood P, Hermansen K, Hu FB et al (2011) The role of reducing intakes of saturated fat in the prevention of cardiovascular disease: where does the evidence stand in 2010? Am J Clin Nutr 93(4):684–688

    Article  Google Scholar 

  • Awad TS, Rogers MA, Marangoni AG (2004) Scaling behavior of the elastic modulus in colloidal networks of fat crystals. J Phys Chem 108(1):171–179

    Article  Google Scholar 

  • Chakrabarti-Bell S, Bergström JS, Lindskog E, Sridhar T (2010) Computational modeling of dough sheeting and physical interpretation of the non-linear rheological behavior of wheat flour dough. J Food Eng 100(2):278–288

    Article  Google Scholar 

  • Christensen RM (1982) Theory of viscoelasticity: an introduction, 2nd edn. Academic, New York

    Google Scholar 

  • Coussot P, Tabuteau H, Chateau X, Tocquer L, Ovarlez G (2006) Aging and solid or liquid behavior in pastes. J Rheol 50(6):975–994

    Article  Google Scholar 

  • de Man L, De Man JM, Blackman B (1991) Physical and textural characteristics of some North American shortenings. J Am Oil Chem Soc 68(2):63–69

    Article  Google Scholar 

  • Ewoldt RH, Hosoi AE, McKinley GH (2008) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52(6):1427–1458

    Article  Google Scholar 

  • Ewoldt RH, McKinley GH (2010) On secondary loops in LAOS via self-intersection of Lissajous–Bowditch curves. Rheol Acta 49(2):213–219

    Article  Google Scholar 

  • Fukada E, Sone T, Fukushima M (1961) Thixotropic behavior and crystallinity of butter. J Jpn Soc Test Mater 10(92):338–341

    Google Scholar 

  • Ganeriwala SN, Rotz CA (1987) Fourier-transform mechanical analysis for determining the nonlinear viscoelastic properties of polymers. Polym Eng Sci 27(2):165–178

    Article  Google Scholar 

  • Ghotra BS, Dyal SD, Narine SS (2002) Lipid shortenings: a review. Food Res Int 35(10):1015–1048

    Article  Google Scholar 

  • Haighton AJ (1959) The measurement of the hardness of margarine and fats with cone penetrometers. J Am Oil Chem Soc 36(8):345–348

    Article  Google Scholar 

  • Heertje I (1993) Microstructural studies in fat research. Food Struct 12(1):77–94

    Google Scholar 

  • Heertje I, Cornelissen JM, Juriaanse AC (1988) The effect of processing on some microstructural characteristics of fat spreads. Food Microstruct 7(2):189–193

    Google Scholar 

  • Herrera ML, Hartel RW (2000) Effect of processing conditions on crystallization kinetics of a milk fat model system. J Am Oil Chem Soc 77(11):1177–1188

    Article  Google Scholar 

  • Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newton Fluid 107(1):51–65

    Article  Google Scholar 

  • Hyun K, Nam JG, Wilhelm M, Ahn KH, Lee SJ (2003) Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow. Korea-Aust Rheol J 15(2):97–105

    Google Scholar 

  • Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG et al (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36(12):1697–1753

    Article  Google Scholar 

  • Kim J, Merger D, Wilhelm M, Helgeson ME (2014) Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. J Rheol 58(5):1359–1390

    Article  Google Scholar 

  • Kloek W, Van Vliet T, Walstra P (2005) Mechanical properties of fat dispersions prepared in a mechanical crystallizer. J Texture Stud 36(5–6):544–568

    Article  Google Scholar 

  • Li X, Wang SQ, Wang X (2009) Nonlinearity in large amplitude oscillatory shear (LAOS) of different viscoelastic materials. J Rheol 53(5):1255–1274

    Article  Google Scholar 

  • Macias-Rodriguez B, Marangoni AG (2016) Physicochemical and rheological characterization of roll-in shortenings. J Am Oil Chem Soc 93(4):575–585

  • Maleky F, Smith AK, Marangoni A (2011) Laminar shear effects on crystalline alignments and nanostructure of a triacylglycerol crystal network. Crys Growth Des 11(6):2335–2345

    Article  Google Scholar 

  • Marangoni AG, Acevedo N, Maleky F, Peyronel F, Mazzanti G, Quinn B, Pink D (2012) Structure and functionality of edible fats. Soft Matter 8(5):1275–1300

    Article  Google Scholar 

  • Marangoni AG, Rogers MA (2003) Structural basis for the yield stress in plastic disperse systems. Applied Physics Letters 82(19):3239–3241

    Article  Google Scholar 

  • Marangoni AG, Rousseau D (1996) Is plastic fat rheology governed by the fractal nature of the fat crystal network? J Am Oil Chem Soc 73(8):991–994

    Article  Google Scholar 

  • Mazzanti G, Li M, Marangoni AG, Idziak SH (2011) Effects of shear rate variation on the nanostructure of crystallizing triglycerides. Cryst Growth Des 11(10):4544–4550

    Article  Google Scholar 

  • Mewis J, Wagner NJ (2009) Thixotropy. Adv Colloid Interface Sci 147:214–227

    Article  Google Scholar 

  • Mozaffarian D, Aro A, Willett W (2009) Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr 63:S5–S21

    Article  Google Scholar 

  • Narine SS, Humphrey KL (2004) A comparison of lipid shortening functionality as a function of molecular ensemble and shear: microstructure, polymorphism, solid fat content and texture. Food Res Int 37(1):28–38

    Article  Google Scholar 

  • Narine SS, Marangoni AG (1999a) Fractal nature of fat crystal networks. Phys Rev E 59(2):1908–1919

    Article  Google Scholar 

  • Narine SS, Marangoni AG (1999b) Relating structure of fat crystal networks to mechanical properties: a review. Food Res Int 32(4):227–248

    Article  Google Scholar 

  • Narine SS, Marangoni AG (1999c) Mechanical and structural model of fractal networks of fat crystals at low deformations. Phys Rev E 60(6):6991–7000

    Article  Google Scholar 

  • Pérez-Martínez JD, Reyes-Hernández J, Dibildox-Alvarado E, Toro-Vazquez JF (2012) Physical properties of cocoa butter/vegetable oil blends crystallized in a scraped surface heat exchanger. J Am Oil Chem Soc 89(2):199–209

    Article  Google Scholar 

  • Peyronel F, Ilavsky J, Pink DA, Marangoni AG (2014a) Quantification of the physical structure of fats in 20 minutes: implications for formulation. Lipid Technol 26(10):223–226

    Article  Google Scholar 

  • Peyronel F, Quinn B, Marangoni AG, Pink DA (2014b) Ultra small angle X-ray scattering in complex mixtures of triacylglycerols. J Phys Condens Matter 26(46):464110

    Article  Google Scholar 

  • Pink DA, Peyronel F, Quinn B, Singh P, Marangoni AG (2015) Condensation versus diffusion. A spatial-scale-independent theory of aggregate structures in edible oils: applications to model systems and commercial shortenings studied via rheology and USAXS. J Phys D Appl Phys 48(38):384003

    Article  Google Scholar 

  • Poulos AS, Stellbrink J, Petekidis G (2013) Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear. Rheol Acta 52(8–9):785–800

    Article  Google Scholar 

  • Quinn B, Peyronel F, Gordon T, Marangoni AG, Hanna CB et al (2014) Aggregation in complex triacylglycerol oils: coarse-grained models, nanophase separation, and predicted X-ray intensities. J Phys Condens Matter 26(46):464108

    Article  Google Scholar 

  • Renou F, Stellbrink J, Petekidis G (2010) Yielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS). J Rheol 54(6):1219–1242

    Article  Google Scholar 

  • Renzetti S, de Harder R, Jurgens A (2016) Puff pastry with low saturated fat contents: the role of fat and dough physical interactions in the development of a layered structure. J Food Eng 170:24–32

    Article  Google Scholar 

  • Rogers MC, Chen K, Andrzejewski L, Narayanan S, Ramakrishnan S et al (2014) Echoes in X-ray speckles track nanometer-scale plastic events in colloidal gels under shear. Phys Rev E 90(6):062310

    Article  Google Scholar 

  • Rønholt S, Kirkensgaard JK, Høyer KF, Mortensen K, Knudsen JC (2014) The effect of capacity, rotational speed and storage on crystallization and rheological properties of puff pastry butter. J Am Oil Chem Soc 91(1):29–38

    Article  Google Scholar 

  • Sato K, Ueno S (2011) Crystallization, transformation and microstructures of polymorphic fats in colloidal dispersion states. Curr Opin Colloid Interface Sci 16(5):384–390

    Article  Google Scholar 

  • Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior: an introduction, 1st edn. Springer, Berlin

    Book  Google Scholar 

  • Van den Tempel M (1961) Mechanical properties of plastic-disperse systems at very small deformations. J Colloid Interface Sci 16(3):284–296

    Article  Google Scholar 

  • van der Vaart K, Rahmani Y, Zargar R, Hu Z, Bonn D et al (2013) Rheology of concentrated soft and hard-sphere suspensions. J Rheol 57(4):1195–1209

    Article  Google Scholar 

  • Walstra P, Kloek W, van Vliet Ton (2001) Fat crystal networks. In: Garti, Sato Crystallization processes in fats and lipid systems.

  • Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38(4):349–356

    Article  Google Scholar 

  • Wilhelm M, Reinheimer P, Ortseifer M, Neidhöfer T, Spiess HW (2000) The crossover between linear and non-linear mechanical behaviour in polymer solutions as detected by Fourier-transform rheology. Rheol Acta 39(3):241–246

    Article  Google Scholar 

  • Wilhelm M (2002) Fourier‐transform rheology. Macromol Mater Eng 287(2):83–105

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Randy Ewoldt of the University of Illinois, Urbana-Champaign, for providing the Matlab FT algorithm and for his always-stimulating conversations on rheology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro G. Marangoni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macias-Rodriguez, B., Marangoni, A.G. Rheological characterization of triglyceride shortenings. Rheol Acta 55, 767–779 (2016). https://doi.org/10.1007/s00397-016-0951-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0951-6

Keywords

Navigation