Advertisement

Rheologica Acta

, Volume 55, Issue 8, pp 613–632 | Cite as

Macromolecular topology and rheology: beyond the tube model

  • Dimitris Vlassopoulos
Original Contribution

Abstract

The motion of entangled polymers is marked by their ability to make conformational adjustments, which is mediated by their free ends. A credible account of the basic features of entanglement release in linear and nonlinear rheology is offered by the tube model which, despite its limitations and shortcomings, is considered as the “standard” model in the field, accounting for the dynamics of linear and branched polymers with homogeneous monomer density. Here, we challenge the two central elements of the molecular picture of entanglements by exploiting the consequences of absence of free ends and monomer density distribution. Non-concatenated ring polymers of high molar mass do not form an entanglement network with plateau modulus, but instead relax stress self-similarly, while they deform much less than their linear counterparts in nonlinear shear flow. Their rheology is extremely sensitive to the presence of unlinked linear chains. On the other hand, star polymers with many arms have a dual nature: polymeric, which governs arm relaxation, and colloidal, which controls their subsequent center-of-mass motion and completes the stress relaxation process. Appropriate choice of number and size of arms allows to tune their dynamic and structural properties, and therefore bridge the gap between polymers and colloids. These examples demonstrate a different manifestation of topological interactions, with distinct linear and nonlinear rheology, which cannot be described in full by the tube model. They also provide an avenue for taking advantage of macromolecular architecture in order to engineer the rheology of polymeric structures and soft composites. Still, a number of outstanding issues remain and we outline some perspectives in this exciting field of molecular rheology.

Keywords

Entanglement Ring polymer Soft colloids Star polymer Topological caging 

Notes

Acknowledgments

This overview reflects interactions with many present and past collaborators, to whom I am deeply indebted: Jacques Roovers, Wim Briels, Taihyun Chang, Michel Cloitre, Ralph Colby, Jan Dhont, Mario Gauthier, Nikos Hadjichristidis, Savvas Hatzikiriakos, Giovanni Ianniruberto, Sanat Kumar, Gary Leal, Christos Likos, Pino Marrucci, Kris Matyjazewski, Vlasis Mavrantzas, Tom McLeish, Wim Pyckhout-Hintzen, Dieter Richter, Michael Rubinstein, Sasha Semenov, Dieter Schlüter, Norm Wagner, Hiroshi Watanabe, and the late friends Tadeusz Pakula, Paul Callaghan, and Alexei Likhtman. The work presented is based on the dedicated efforts of several gifted students and postdocs: Evelyne van Ruymbeke, Frank Snijkers, Rossana Pasquino, Domenico Truzzolillo, Michael Kapnistos, Emmanuel Stiakakis, Salvatore Costanzo, Zhi-Chao Yan, Helen Lentzakis, Salvatore Coppola, Samruddhi Kamble, Brian Erwin, and Simon Rogers. Very special thanks to my colleagues in Crete, George Fytas, Benoit Loppinet, and George Petekidis, to Jan Mewis and Ole Hassager, and, of course, to Gerry Fuller and Jan Vermant.

References

  1. Adams JM, Fielding SM, Olmsted PD (2011) Transient shear banding in entangled polymers: a study using the Rolie-poly model. J Rheol 55:1007–1032CrossRefGoogle Scholar
  2. Agarwal P, Srivastava S, Archer LA (2011a) Thermal jamming of a colloidal glass. Phys Rev Lett 107:268302CrossRefGoogle Scholar
  3. Agarwal P, Archer LA (2011b) Strain-accelerated dynamics of soft colloidal glasses. Phys Rev E 83:041402CrossRefGoogle Scholar
  4. Ahmadi M, Bailly C, Keunings R, Nekoomanesh M, Arabi H, van Ruymbeke E (2011) Time marching algorithm for predicting the linear rheology of monodisperse comb polymer melts. Macromolecules 44:647–659CrossRefGoogle Scholar
  5. Alvarez NJ, Marín JMR, Huang Q, et al. (2013) Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts. Phys Rev Lett 110:168301CrossRefGoogle Scholar
  6. Andreev M, Schieber JD (2015) Accessible and quantitative entangled polymer rheology predictions, suitable for complex flow calculations. Macromolecules 48:1606–1613CrossRefGoogle Scholar
  7. Antonietti M, Pakula T, Bremse W (1995) Rheology of small spherical polystyrene microgels: a direct proof for a new transport mechanism in bulk polymers besides reptation. Macromolecules 28:4227–4233CrossRefGoogle Scholar
  8. Archer LA, Juliani (2004) Linear and nonlinear viscoelasticity of entangled multiarm (pom-pom) polymer liquids. Macromolecules 37:1076–1088CrossRefGoogle Scholar
  9. Auhl D, Ramirez J, Likhtman AE, Chambon P, Fernyhough C (2008) Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weights. J Rheol 52:801–835CrossRefGoogle Scholar
  10. Bach A, Rasmussen HK, Hassager O (2003) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47:429–441CrossRefGoogle Scholar
  11. Bacova P, Lentzakis H, Read DJ, Moreno AJ, Vlassopoulos D, Das C (2014) Branch-point motion in architecturally complex polymers: estimation of hopping parameters from computer simulations and experiments. Macromolecules 47:3362–3377CrossRefGoogle Scholar
  12. Bent J, Hutchings LR, Richards RW, Gough T, Spares R, Coates PD, Grillo I, Harlen OG, Read DJ, Graham RS, Likhtman AE, Groves DJ, Nicholson TM, McLeish TCB (2003) Neutron-mapping polymer flow: scattering, flow visualization, and molecular theory. Science 301:1691–1695CrossRefGoogle Scholar
  13. Berry GC, Fox TG (1968) The viscosity of polymers and their concentrated solutions. Adv Polym Sci 5:261–357CrossRefGoogle Scholar
  14. Bielawski CW, Benitez D, Grubbs RH (2002) An “endless” route to cyclic polymers. Science 297:2041–2044CrossRefGoogle Scholar
  15. Bras AR, Pasquino R, Koukoulas T, Tsolou G, Holderer O, Radulescu A, Allgaier J, Mavrantzas VG, Pyckhout-Hintzen W, Wischnewski A, Vlassopoulos D, Richter D (2011) Structure and dynamics of polymer rings by neutron scattering: breakdown of the rouse model. Soft Matter 7:11169–11176CrossRefGoogle Scholar
  16. Briels WJ (2009) Transient forces in flowing soft matter. Soft Matter 5:4401–4411CrossRefGoogle Scholar
  17. Cao J, Likhtman AE (2015) Simulating start-up of entangled polymer melts. ACS Macro Lett 4:1376–1381CrossRefGoogle Scholar
  18. Cates ME, Deutsch JM (1986) Conjectures on the statistics of ring polymers. J Phys 47:2121–2128CrossRefGoogle Scholar
  19. Cates ME (2003) Arrest and flow of colloidal glasses. Ann Henri Poincaré 4(Suppl. 2):S647–S661CrossRefGoogle Scholar
  20. Chambon P, Fernyhough CM, Im K, Chang T, Das C, Embery J, McLeish TCB, Read DJ (2008) Synthesis, temperature gradient interaction chromatography, and rheology of entangled styrene comb polymers. Macromolecules 41:5869–5875CrossRefGoogle Scholar
  21. Chang T (2005) Polymer characterization by interaction chromatography. J Polym Sci B Polym Phys 43:1591–1607CrossRefGoogle Scholar
  22. Chen Q, Gong S, Moll J, Zhao D, Kumar SK, Colby RH (2015) Mechanical reinforcement of polymer nanocomposites from percolation of a nanoparticle network. ACS Macro Lett 4:398–402CrossRefGoogle Scholar
  23. Chen X, Lee H, Rahman MS, Lee H, Mays J, Chang T, Larson RG (2011) Combined synthesis, TGIC characterization, and rheological measurement and prediction of symmetric H polybutadienes and their blends with linear and star-shaped polybutadienes. Macromolecules 44:7799–7809CrossRefGoogle Scholar
  24. Chisholm MH, Gallucci JD, Yin H (2006) Cyclic esters and cyclodepsipeptides derived from lactide and 2, 5-morpholinediones. Proc Natl Acad Sci (PNAS) 103:15315–15320CrossRefGoogle Scholar
  25. Chremos A, Douglas JF (2015) When does a branched polymer become a particle? J Chem Phys 143:111104CrossRefGoogle Scholar
  26. Chremos A, Panagiotopoulos AZ, Koch DL (2012) Dynamics of solvent-free grafted nanoparticles. J Chem Phys 136:044902CrossRefGoogle Scholar
  27. Cogswell FN (1969) Tensile deformations in molten polymers. Rheol Acta 8:187–194CrossRefGoogle Scholar
  28. Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980CrossRefGoogle Scholar
  29. Costanzo S, Huang Q, Ianniruberto G, Marrucci G, Hassager O, Vlassopoulos D (2016) Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements. Macromolecules 49:3925–3935CrossRefGoogle Scholar
  30. Cremer T, Cremer M, Dietzel S, Müller S, Solovei I, Fakan S (2006) Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol 18:307–316CrossRefGoogle Scholar
  31. Cromer M, Fredrickson GH, Leal LG (2014) A study of shear banding in polymer solutions. Phys Fluids 26:063101CrossRefGoogle Scholar
  32. Das C, Inkson NJ, Read DJ, Kelmanson MA, McLeish TCB (2006) Computational linear rheology of general branch-on-branch polymers. J Rheol 50:207–234CrossRefGoogle Scholar
  33. des Cloizeaux J (1988) Double reptation vs. simple reptation in polymer melts. Europhys Lett 5:437–442CrossRefGoogle Scholar
  34. Daniel WFM, Burdyńska J, Vatankhah-Varnosfaderani M, Matyjaszewski K, Paturej J, Rubinstein M, Dobrynin AV, Sheiko SS (2016) Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nat Mater 15:183–190CrossRefGoogle Scholar
  35. Daoud M, Cotton JP (1982) Star shaped polymers: a model for the conformation and its concentration dependence. J Phys (Paris) 43:531–538CrossRefGoogle Scholar
  36. Dealy JM, Wissbrun KF (1990) Melt rheology and its role in plastics processing. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  37. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers. Hanser Publications, New YorkCrossRefGoogle Scholar
  38. Dessi C, Tsibidis GD, Vlassopoulos D, De Corato M, Trofa M, D’Avino G, Maffettone PL, Coppola S (2016) Analysis of dynamic mechanical response in torsion. J Rheol 60:275–287CrossRefGoogle Scholar
  39. Dhont JKG, Lettinga MP, Dogic Z, Lenstra TAJ, Wang H, Rathgeber S, Carletto P, Willner L, Frielinghausb H, Lindner P (2003) Shear-banding and microsctructure of colloids in shear flow. Faraday Discuss 123:157–172CrossRefGoogle Scholar
  40. Doi M (1983) Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model. J Polym Sci Polym Phys Ed 21:667–684CrossRefGoogle Scholar
  41. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New YorkGoogle Scholar
  42. Doi Y, Matsubara K, Ohta Y, Nakano T, Kawaguchi D, Takahashi Y, Takano A, Matsushita Y (2015) Melt rheology of ring polymers with ultra-high purity. Macromolecules 48:3140–3147CrossRefGoogle Scholar
  43. Dullaert K, Mewis J (2005) Stress jumps on weakly flocculated dispersions: steady state and transient results. J Colloid Interface Sci 287:542–551CrossRefGoogle Scholar
  44. Ederle Y, Naraghi KS, Lutz PJ (1999) In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology, volume: synthesis of polymers (Schlüter AD, ed.). Wiley, New YorkGoogle Scholar
  45. Eisenberg A, Eu BC (1976) Mechanical spectroscopy: an introductory review. Annu Rev Mater Sci 6:335–359CrossRefGoogle Scholar
  46. Erwin BM, Colby RH (2002) Temperature dependences of relaxation times and the length scale of cooperative motion for glass-forming liquids. J Non-Cryst Solids 307-310:225–231CrossRefGoogle Scholar
  47. Erwin BM, Vlassopoulos D, Cloitre M (2010) Rheological fingerprinting of an aging soft colloidal glass. J Rheol 54:915–939CrossRefGoogle Scholar
  48. Fetters LJ, Kiss AD, Pearson DS, Quack GF, Vitus FJ (1993) Rheological behavior of star-shaped polymers. Macromolecules 26:647–654CrossRefGoogle Scholar
  49. Fetters LJ, Lohse DJ, Milner ST, Graessley WW (1999) Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights. Macromolecules 32:6847–6851CrossRefGoogle Scholar
  50. Freeman SM, Weissenberg K (1948) Some new rheological phenomena and their significance for the constitution of materials. Nature 162:320–323CrossRefGoogle Scholar
  51. Fuchs M, Cates ME (2009) A mode coupling theory for Brownian particles inhomogeneous steady shear flow. J Rheol 53:957–1000CrossRefGoogle Scholar
  52. Ge T, Panyukov S, Rubinstein M (2015) Self-similar conformations and dynamics in entangled melts and solutions of nonconcatenated ring polymers. Macromolecules 49:702–722Google Scholar
  53. de Gennes PG (1996) Soft adhesives. Langmuir 12:4497–4500CrossRefGoogle Scholar
  54. Gohr K, Pakula TP, Tsutsumi K, Schärtl W (1999) Dynamics of copolymer micelles in an entangled homopolymer matrix. Macromolecules 32:7156–7165CrossRefGoogle Scholar
  55. Gooßen S, Krutyeva M, Sharp M, Feoktystov A, Allgaier J, Pyckhout-Hintzen W, Wischnewski A, Richter D (2015) Sensing polymer chain dynamics through ring topology: a neutron spin Echo study. Phys Rev Lett 115:148302CrossRefGoogle Scholar
  56. Goot RD, Madden TJ (1998) Dynamic simulation of diblock copolymer microphase separation. J Chem Phys 108:8713–8724CrossRefGoogle Scholar
  57. Graessley WW, Hazleton RL, Lindeman LR (1967) The shear-rate dependence of viscosity in concentrated solutions of narrow-distribution polystyrene. Trans Soc Rheol 11:267–285CrossRefGoogle Scholar
  58. Graessley WW (2008) Polymeric liquids & networks: dynamics and rheology. Garland Science, New YorkGoogle Scholar
  59. Graham RS, Likhtman AE, McLeish TCB, Milner ST (2003) Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. J Rheol 47:1171–1200CrossRefGoogle Scholar
  60. Graham RS, Henry EP, Olmsted PD (2013) Comment on “New experiments for improved theoretical description of nonlinear rheology of entangled polymers”. Macromolecules 46:9849–9854CrossRefGoogle Scholar
  61. de Greef TFA, Meijer EW (2008) Supramolecular polymers. Nature 453:171–173CrossRefGoogle Scholar
  62. Grest GS, Kremer K, Milner ST, Witten TA (1989) Relaxation of self-entangled many-arm polymers. Macromolecules 22:1904–1910CrossRefGoogle Scholar
  63. Grest GS, Fetters LJ, Huang JS, Richter D (1996) Star polymers: experiment, theory and simulation. Adv Chem Phys XCIV: 67–164 (Prigogine I, Rice SA eds) Wiley, New YorkGoogle Scholar
  64. Grosberg AY (2014) Annealed lattice animal model and Flory theory for the melt of non-concatenated rings: towards the physics of crumpling. Soft Matter 10:560–565CrossRefGoogle Scholar
  65. Hachmann P, Meissner J (2003) Rheometer for equibiaxial and planar elongations of polymer melts. J Rheol 47:989–1010CrossRefGoogle Scholar
  66. Halperin A (1987) Polymeric micelles: a star model. Macromolecules 20:2943–2946CrossRefGoogle Scholar
  67. Halperin A, Tirrell M, Lodge TP (1992) Tethered chains in polymer microstructures. Adv Polym Sci 100:31–71CrossRefGoogle Scholar
  68. Halverson JD, Lee WB, Grest GS, Grosberg AY, Kremer K (2011a) Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics. J Chem Phys 134:204904CrossRefGoogle Scholar
  69. Halverson JD, Lee WB, Grest GS, Grosberg AY, Kremer K (2011b) Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics. J Chem Phys 134:204905CrossRefGoogle Scholar
  70. Halverson JD, Grest GS, Grosberg AY, Kremer K (2012) Rheology of ring polymer melts: from linear contaminants to ring-linear blends. Phys Rev Lett 108:038301CrossRefGoogle Scholar
  71. Halverson JD, Smrek J, Kremer K, Grosberg AY (2014) From a melt of rings to chromosome territories: the role of topological constraints in genome folding. Rep Prog Phys 77:022601CrossRefGoogle Scholar
  72. Harmandaris VA, Kremer K (2009) Predicting polymer dynamics at multiple length and time scales. Soft Matter 5:3920–3926CrossRefGoogle Scholar
  73. Hassager O, Mortensen K, Bach A, Almdal K, Rasmussen HK, Pyckhout-Hintzen W (2012) Stress and neutron scattering measurements on linear polymer melts undergoing steady elongational flow. Rheol Acta 51:385–394CrossRefGoogle Scholar
  74. Hassell DG, Lord TD, Scelsi L, Klein DH, Auhl D, Harlen OG, McLeish TCB, Mackley MR (2011) The effect of boundary curvature on the stress response of linear and branched polyethylenes in a contraction–expansion flow. Rheol Acta 50:675–689CrossRefGoogle Scholar
  75. Hatzikiriakos SG (2015) Slip mechanisms in complex fluid flows. Soft Matter 11:7851–7856CrossRefGoogle Scholar
  76. Hawke LGD, Ahmadi M, Goldansaz H, van Ruymbeke E (2016) Viscoelastic properties of linear associating poly(n-butyl acrylate) chains. J Rheol 60:297–310CrossRefGoogle Scholar
  77. Hild G, Strazielle C, Remp P (1983) Cyclic macromolecules. Synthesis and characterization of ring-shaped polystyrenes. Eur Polym J 19:721–727CrossRefGoogle Scholar
  78. Holmes CB, Sollich P, Fuchs M, Cates ME (2005) Glass transitions and shear thickening suspension rheology. J Rheol 49:237–269CrossRefGoogle Scholar
  79. Hutcheson SA, McKenna GB (2008) The measurement of mechanical properties of glycerol, m-toluidine, and sucrose benzoate under consideration of corrected rheometer compliance: an in-depth study and review. J Chem Phys 129:074502CrossRefGoogle Scholar
  80. Ianniruberto G (2015a) Quantitative appraisal of a new CCR model for entangled linear polymers. J Rheol 59:211–235CrossRefGoogle Scholar
  81. Ianniruberto G (2015b) Extensional flows of solutions of entangled polymers confirm reduction of friction coefficient. Macromolecules 48:6306–6312CrossRefGoogle Scholar
  82. Inn YW, Wissbrun KF, Denn MM (2005) Effect of edge fracture on constant torque rheometry of entangled polymer solutions. Macromolecules 38:9385–9388CrossRefGoogle Scholar
  83. Jia Z, Monteiro MJ (2012) Cyclic polymers: methods and strategies. J Polym Sci A Polym Chem 50:2085–2097CrossRefGoogle Scholar
  84. Kapnistos M, Semenov AN, Vlassopoulos D, Roovers J (1999) Viscoelastic response of hyperstar polymers in the linear regime. J Chem Phys 111:1753–1759CrossRefGoogle Scholar
  85. Kapnistos M, Vlassopoulos D, Roovers J, Leal LG (2005) Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules 38:7852–7862CrossRefGoogle Scholar
  86. Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M (2008) Unexpected power-law stress relaxation in entangled ring polymers. Nat Mater 7:997–1002CrossRefGoogle Scholar
  87. Keshavarz M, Engelkamp M, Xu J, Braeken E, Otten MBJ, Uji-I H, Schwartz E, Koepf M, Vananroye A, Vermant J, Nolte RJM, De Schryver F, Maan JC, Hofkens J, Christianen PCM, Rowan AE (2016) Nanoscale study of polymer dynamics. ACS Nano 10:1434–1441CrossRefGoogle Scholar
  88. Kim SA, Mangal R, Archer LA (2015) Relaxation dynamics of nanoparticle-tethered polymer chains. Macromolecules 48:6280–6293CrossRefGoogle Scholar
  89. Kinloch AJ, Young RJ (1995) Fracture behavior of polymers. Springer, DordrechtCrossRefGoogle Scholar
  90. Klein J (1986) Dynamics of entangled linear, branched and cyclic polymers. Macromolecules 19:105–118CrossRefGoogle Scholar
  91. Kobelev V, Schweizer KS (2005) Strain softening, yielding, and shear thinning in glassy colloidal suspensions. Phys Rev E 71:021401CrossRefGoogle Scholar
  92. Kossuth MB, Morse DC, Bates FS (1999) Viscoelastic behavior of cubic phases in block copolymer melts. J Rheol 43:167–196CrossRefGoogle Scholar
  93. Kotaka T, Kurata M, Tamura M (1962) Non-Newtonian flow and normal stress phenomena in solutions of polystyrene in toluene. Rheol Acta 2:179–186CrossRefGoogle Scholar
  94. Kumar SK, Jouault N, Benicewicz B, Neely T (2013) Nanocomposites with polymer-grafted nanoparticles. Macromolecules 46:3199–3214CrossRefGoogle Scholar
  95. Larson RG (1992) Instabilities in viscoelastic flow. Rheol Acta 31:213–263CrossRefGoogle Scholar
  96. Larson RG, Winey KI, Patel SS, Watanabe H, Bruinsma R (1993) The rheology of layered liquids: lamellar block copolymers and smectic liquid crystals. Rheol Acta 32:245–253CrossRefGoogle Scholar
  97. Larson RG (2001) Combinatorial rheology of branched polymer melts. Macromolecules 42:4556–4571CrossRefGoogle Scholar
  98. Larson RG, Sridhar T, Leal LG, McKinley GH, Likhtman AE, McLeish TCB (2003) Definitions of entanglement spacing and time constants in the tube model. J Rheol 47:809–818CrossRefGoogle Scholar
  99. Lee HC, Lee H, Lee W, Chang T, Roovers J (2000) Fractionation of cyclic polystyrene from linear precursor by HPLC at the chromatographic critical condition. Macromolecules 33:8119–8121CrossRefGoogle Scholar
  100. Le Meins J-F, Moldenaers P, Mewis J (2003) Suspensions of monodisperse spheres in polymer melts: particle size effects in extensional flow. Rheol Acta 42:184–190CrossRefGoogle Scholar
  101. Lentzakis H, Vlassopoulos D, Read DJ, Lee H, Chang T, Driva P, Hadjichristidis N (2013) Uniaxial extensional rheology of well-characterized comb polymers. J Rheol 57:605–625CrossRefGoogle Scholar
  102. Levental I, Georges PC, Janmey PA (2007) Soft biological materials and their impact on cell function. Soft Matter 3:299–306CrossRefGoogle Scholar
  103. Li SW, Park HE, Dealy JM, Maric M, Im K, Chang T, Lee H, Choi H, Rahman MS, Mays J (2011) Detecting structural polydispersity in branched polybutadienes. Macromolecules 44:208–214CrossRefGoogle Scholar
  104. Li Y, Hu M, McKenna GB, Dimitriou CJ, McKinley GH, Mick RM, Venerus DC, Archer LA (2013) Flow field visualization of entangled polybutadiene solutions under nonlinear viscoelastic flow conditions. J Rheol 57:1411–1428CrossRefGoogle Scholar
  105. Li Y, Hsiao K-W, Brockman C-A, Yates DY, Robertson-Anderson RM, Kornfield JA, San Francisco MJ, Schroeder CM, McKenna GB (2015) Macromolecules 48:5997–6001CrossRefGoogle Scholar
  106. Ligoure C, Mora S (2013) Fractures in complex fluids: the case of transient networks. Rheol Acta 52:91–114CrossRefGoogle Scholar
  107. Likos CN (2001) Effective interactions in soft condensed matter physics. Phys Rep 348:267–439CrossRefGoogle Scholar
  108. Likhtman AE, McLeish TCB (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332–6343CrossRefGoogle Scholar
  109. Likhtman AE (2005) Single-chain slip-link model of entangled polymers: simultaneous description of neutron spin-echo, rheology, and diffusion. Macromolecules 38:6128–6139CrossRefGoogle Scholar
  110. Likhtman AE (2009) Whither tube theory: from believing to measuring. J Non-Newtonian Fluid Mech 157:158–161CrossRefGoogle Scholar
  111. Likhtman AE, Ponmurugan M (2014) Microscopic definition of polymer entanglements. Macromolecules 47:1470–1481CrossRefGoogle Scholar
  112. Lindenblatt G, Schärtl W, Pakula T, Schmidt M (2000) Synthesis of polystyrene-grafted polyorganosiloxane microgels and their compatibility with linear polystyrene chains. Macromolecules 33:9340–9347CrossRefGoogle Scholar
  113. Lindenblatt G, Schärtl W, Pakula T, Schmidt M (2001) Structure and dynamics of hairy spherical colloids in a matrix of nonentangled linear chains. Macromolecules 34:1730–1736CrossRefGoogle Scholar
  114. Liu C-Y, Halasa AF, Keunings R, Bailly C (2006) Probe rheology: a simple method to test tube motion. Macromolecules 39:7415–7424CrossRefGoogle Scholar
  115. Liu C-Y, Yao M, Garritano RG, Franck AJ, Bailly C (2011) Instrument compliance effects revisited: linear viscoelastic measurements. Rheol Acta 50:537–546CrossRefGoogle Scholar
  116. Lo WC, Turner MS (2013) The topological glass in ring polymers. Europhys Lett 102:58005CrossRefGoogle Scholar
  117. Lord SJ, Leed H-ID, Moerner WE (2010) Single-molecule spectroscopy and imaging of biomolecules in living cells. Anal Chem 82:2192–2203CrossRefGoogle Scholar
  118. Maia JM, Covas JA, Nóbrega JM, Dias TF, Alves FE (1999) Measuring uniaxial extensional viscosity using a modified rotational rheometer. J Non-Newtonian Fluid Mech 80:183–197CrossRefGoogle Scholar
  119. Mandare P, Winter HH (2006) Ultraslow dynamics in asymmetric block copolymers with nanospherical domains. Colloid Polym Sci 284:1203–1210CrossRefGoogle Scholar
  120. Marrucci G (1985) Relaxation by reptation and tube enlargement: a model for polydisperse. J Polym Sci B Polym Phys 23:159–177CrossRefGoogle Scholar
  121. Marrucci G (1996) Dynamics of entanglements: a nonlinear model consistent with the Cox–Merz rule. J Non-Newtonian Fluid Mech 62:279–289CrossRefGoogle Scholar
  122. Masubuchi Y, Watanabe H (2014) Origin of stress overshoot under start-up shear in primitive chain network simulation. ACS Macro Lett 3:1183–1186CrossRefGoogle Scholar
  123. McConnell GA, Gast AP, Huang JS, Smith SD (1993) Disorder-order transitions in soft sphere polymer micelles. Phys Rev Lett 71:2102–2105CrossRefGoogle Scholar
  124. McKenna GB, Plazek DJ (1986) The viscosity of blends of linear and cyclic polymers of similar molecular mass. Polymer Comm 27:304–306CrossRefGoogle Scholar
  125. McKenna GB, Hostetter BJ, Hadjichristidis N, Fetters LJ, Plazek DJ (1989) A study of the linear viscoelastic properties of cyclic polystyrenes using creep and recovery measurements. Macromolecules 22:1834–1852CrossRefGoogle Scholar
  126. McKenna GB (2006) Commentary on rheology of polymers in narrow gaps. Eur Phys J E 19:101–108CrossRefGoogle Scholar
  127. McLeish TCB (1988) Hierarchical relaxation in tube models of branched polymers. Europhys Lett 6:511–516CrossRefGoogle Scholar
  128. McLeish TCB (2002) Tube theory of entangled polymer dynamics. Adv Phys 51:1379–1527CrossRefGoogle Scholar
  129. McLeish TCB, Allgaier J, Bick DK, Bishko G, Biswas P, Blackwell R, Blottière B, Clarke N, Gibbs B, Groves DJ, Hakiki A, Heenan RK, Johnson JM, Kant R, Read DJ, Young RN (1999) Dynamics of entangled H-polymers: theory, rheology, and neutron-scattering. Macromolecules 32:6734–6758CrossRefGoogle Scholar
  130. McLeish TCB (2008a) Molecular polymeric matter, Weissenberg, Astbury and the pleasure of being wrong. Rheol Acta 47:479–489CrossRefGoogle Scholar
  131. McLeish TCB (2008b) Floored by the rings. Nat Mater 7:933–934CrossRefGoogle Scholar
  132. McLeish TCB, Clarke N, de Luca E, Hutchings LR, Graham RS, Gogh T, Grillo I, Fernyhough CM, Chambon P (2009) Neutron flow-mapping: multiscale modelling opens a new experimental window. Soft Matter 5:4426–4432CrossRefGoogle Scholar
  133. Meissner J, Garbella RW, Hostettler J (1989) Measuring normal stress differences in polymer melt shear flow. J Rheol 33:843–864CrossRefGoogle Scholar
  134. Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21CrossRefGoogle Scholar
  135. Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press, New YorkGoogle Scholar
  136. Michieletto D, Turner MS (2016) A topologically driven glass in ring polymers. Proc Natl Acad Sci (PNAS). doi: 10.1073/pnas.1520665113 Google Scholar
  137. Michieletto D, Marenduzzo D, Orlandini E, Alexander GP, Turner MS (2014) Threading dynamics of ring polymers in a gel. ACS Macro Lett 3:255–259CrossRefGoogle Scholar
  138. Mills PJ, Mayer JM, Kramer EJ, Hadziioannou G, Lutz P, Strazielle C, Remp P, Kovacs JA (1987) Diffusion of polymer rings in linear polymer matrices. Macromolecules 20:513–518CrossRefGoogle Scholar
  139. Milner ST, McLeish TCB (1997) Parameter-free theory for stress relaxation in star polymer melts. Macromolecules 30:2159–2166CrossRefGoogle Scholar
  140. Milner ST, McLeish TCB (1998) Arm-length dependence of stress relaxation in star polymer melts. Macromolecules 31:7479–7482CrossRefGoogle Scholar
  141. Milner ST, Newhall JD (2010) Stress relaxation in entangled melts of unlinked ring polymers. Phys Rev Lett 105:208302CrossRefGoogle Scholar
  142. Montarnal D, Capelot M, Tournilhac M, Leibler L (2011) Silica-like malleable materials from permanent organic networks. Science 334:965–968CrossRefGoogle Scholar
  143. Moorcroft RL, Fielding SM (2014) Shear banding in time-dependent flows of polymers and wormlike micelles. J Rheol 58:103–147CrossRefGoogle Scholar
  144. Moore NT, Grosberg AY (2005) Limits of analogy between self-avoidance and topology-driven swelling of polymer loops. Phys Rev E 72:0161803CrossRefGoogle Scholar
  145. Münstedt H (1979) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 23:421–436CrossRefGoogle Scholar
  146. Mzabi S, Berghezan D, Roux S, Hild F, Creton C (2011) A critical local energy release rate criterion for fatigue fracture of elastomers. J Polym Sci Polym Phys Ed 49:1518–1524CrossRefGoogle Scholar
  147. Neugebauer D, Zhang Y, Pakula T, Sheiko SS, Matyjaszewski K (2003) Densely-grafted and double-grafted PEO brushes via ATRP. A route to soft elastomers. Macromolecules 36:6746–6755CrossRefGoogle Scholar
  148. Nielsen JK, Rasmussen HK, Hassager O (2008) Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension. J Rheol 52:885–899CrossRefGoogle Scholar
  149. Obukhov S, Rubinstein M, Duke T (1994) Dynamics of a ring polymer in a gel. Phys Rev Lett 73:1263–1266CrossRefGoogle Scholar
  150. Obukhov S, Lohner A, Baschnagel J, Meyer H, Wittmer JP (2014) Melt of polymer rings: the decorated loop model. Europhys Lett 105:48005CrossRefGoogle Scholar
  151. Orrah DJ, Semlyen JA, Ross-Murphy SB (1988) Studies of cyclic and linear poly(dimethylsiloxanes): 27. Bulk viscosities above the critical molar mass for entanglement. Polymer 29:1452–1454CrossRefGoogle Scholar
  152. Osaki K (1993) On the damping function of shear relaxation modulus for entangled polymers. Rheol Acta 32:429–437CrossRefGoogle Scholar
  153. Pakula T, Geyler S, Edling T, Boese D (1996) Relaxation and viscoelastic properties of complex polymer systems. Rheol Acta 35:631–644CrossRefGoogle Scholar
  154. Pakula T (1998a) Static and dynamic properties of computer simulated melts of multiarm polymer stars. Comput Theor Polym Sci 8:21–30CrossRefGoogle Scholar
  155. Pakula T, Vlassopoulos D, Fytas G, Roovers J (1998b) Structure and dynamics of melts of multiarm polymer stars. Macromolecules 31:8931–8940CrossRefGoogle Scholar
  156. Pakula T (2000) Collective dynamics in simple supercooled and polymer liquids. J Mol Liq 86:109–121CrossRefGoogle Scholar
  157. Pakula T (2003) In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, HeidelbergGoogle Scholar
  158. Park SJ, Desai PS, Chen X, Larson RG (2015) Universal relaxation behavior of entangled 1,4-polybutadiene melts in the transition frequency region. Macromolecules 48:4122–4131CrossRefGoogle Scholar
  159. Park SJ, Shanbhag S, Larson RG (2005) A hierarchical algorithm for predicting the linear viscoelastic properties of polymer melts with long-chain branching. Rheol Acta 44:319–330CrossRefGoogle Scholar
  160. Pasquino R, Vasilakopoulos TC, Jeong YC, Lee H, Rogers S, Sakellariou G, Allgaier J, Takano A, Brás AR, Chang T, Gooβen S, Pyckhout-Hintzen W, Wischnewski A, Hadjichristidis N, Richter D, Rubinstein M, Vlassopoulos D (2013) Viscosity of ring polymer melts. ACS Macro Lett 2:874–878CrossRefGoogle Scholar
  161. Puaud F, Nicol E, Brotons G, Nicolai T, Benyahia L (2014) Liquid–solid transition and crystallization of mixtures of frozen and dynamic star-like polymers. Macromolecules 47:1175–1180CrossRefGoogle Scholar
  162. Pusey PN (1991) In: JP H, Levesque D, Zinn-Justin J (eds) Liquids, freezing and glass transition. North Holland, AmsterdamGoogle Scholar
  163. Qin J, Milner ST (2016) Tube dynamics works for randomly entangled rings. Phys Rev Lett 116:068307CrossRefGoogle Scholar
  164. Ravindranath S, Wang S-Q (2008a) Universal scaling characteristics of stress overshoot in startup shear of entangled polymer solutions. J Rheol 52:681–695CrossRefGoogle Scholar
  165. Ravindranath S, Wang S-Q (2008b) Steady-state measurements in stress plateau region of entangled polymer solutions: controlled-rate and controlled-stress modes. J Rheol 52:957–980CrossRefGoogle Scholar
  166. Read DJ, Auhl D, Das C, den Doelder J, Kapnistos M, Vittorias I, McLeish TCB (2011) Linking models of polymerization and dynamics to predict branched polymer structure and flow. Science 333:1871–1874CrossRefGoogle Scholar
  167. Robertson RM, Smith DE (2007) Strong effects of molecular topology on diffusion of entangled DNA molecules. Proc Natl Acad Sci 104:4824–4827CrossRefGoogle Scholar
  168. Roovers J (1979) Synthesis and dilute solution characterization of comb polystyrenes. Polymer 20:843–849CrossRefGoogle Scholar
  169. Roovers J, Graessley WW (1981) Melt rheology of some model comb polystyrenes. Macromolecules 14:766–773CrossRefGoogle Scholar
  170. Roovers J, Toporowski PM (1983) Synthesis of high-molecular weight ring polystyrenes. Macromolecules 16:843–849CrossRefGoogle Scholar
  171. Roovers J (1985) Melt properties of ring polystyrenes. Macromolecules 18:1359–1361CrossRefGoogle Scholar
  172. Roovers J (1988a) Viscoelastic properties of polybutadiene rings. Macromolecules 21:1517–1521CrossRefGoogle Scholar
  173. Roovers J, Toporowski PM (1988b) Synthesis and characterization of ring polybutadienes. J Polym Sci B Polym Phys 26:1251–1259CrossRefGoogle Scholar
  174. Roovers J (1991) Viscoelastic properties of 32-arm star polybutadienes. Macromolecules 24:5895–5896CrossRefGoogle Scholar
  175. Roovers J, Zhou L-L, Toporowski PM, van der Zwan M, Iatrou H, Hadjichristidis N (1993) Regular star polymers with 64 and 128 arms. Models for polymeric micelles. Macromolecules 26:4324–4331CrossRefGoogle Scholar
  176. Roovers J (2000) In: Semlyen JA (ed) Cyclic polymers. Kluwer, AmsterdamGoogle Scholar
  177. Rosa A, Everaers R (2014) Ring polymers in the melt state: the physics of crumpling. Phys Rev Lett 112:118302CrossRefGoogle Scholar
  178. Rubinstein M (1986) Dynamics of ring polymers in the presence of fixed obstacles. Phys Rev Lett 24:3023–3026CrossRefGoogle Scholar
  179. Rubinstein M, Zurek S, McLeish TCB, Ball RC (1990) Relaxation of entangled polymers at the classical gel point. J Phys Fr 51:757–775CrossRefGoogle Scholar
  180. Rubinstein M, Obukhov S (1993) Power-law-like stress relaxation of block copolymers: disentanglement regimes. Macromolecules 26:1740–1750CrossRefGoogle Scholar
  181. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New YorkGoogle Scholar
  182. Ruocco N, Dahbi L, Driva P, Hadjichristidis N, Allgaier J, Radulescu A, Sharp M, Lindner P, Straube E, Pyckhout-Hintzen W, Richter D (2013) Microscopic relaxation processes in branched-linear polymer blends by rheo-SANS. Macromolecules 2013:9122–9133CrossRefGoogle Scholar
  183. Ruzette A-V, Leibler L (2005) Block copolymers in tomorrow’s plastics. Nat Mater 4:19–31CrossRefGoogle Scholar
  184. Ryu CY, Lee MS, Hajduk DA, Lodge TP (1997) Structure and viscoelasticity of matched asymmetric diblock and triblock copolymers in the cylinder and sphere microstructures. J Polym Sci Polym Phys 35:2811–2823CrossRefGoogle Scholar
  185. Schlüter AD, Halperin A, Kröger M, Vlassopoulos D, Wegner G, Zhang B (2014) Dendronized polymers: molecular objects between conventional linear polymers and colloidal particles. ACS Macro Lett 3:991–998CrossRefGoogle Scholar
  186. Schweizer T, Bardow A (2006) The role of instrument compliance in normal force measurements of polymer melts. Rheol Acta 45:393–402CrossRefGoogle Scholar
  187. Schweizer T, Hostettler J, Mettler F (2008) A shear rheometer for measuring shear stress and both normal stress differences in polymer melts simultaneously: the MTR 25. Rheol Acta 47:943–957CrossRefGoogle Scholar
  188. Schweizer T, Schmidheiny W (2013) Cone-partitioned plate rheometer cell with three partitions (CPP3) to determine shear stress and both normal stress differences for small quantities of polymeric fluids. J Rheol 57:841–856CrossRefGoogle Scholar
  189. Sebastian JM, Lai C, Graessley WW, Register RA (2002b) Steady-shear rheology of block copolymer melts and concentrated solutions: disordering stress in body-centered-cubic systems. Macromolecules 35:2707–2713CrossRefGoogle Scholar
  190. Sebastian JM, Graessley WW, Register RA (2002a) Steady-shear rheology of block copolymer melts and concentrated solutions: defect-mediated flow at low stresses in body-centered-cubic systems. J Rheol 46:863–879CrossRefGoogle Scholar
  191. Sefiddashti MN, Edwards B, Khomami B (2015) Individual chain dynamics of a polyethylene melt undergoing steady shear. J Rheol 59:119–153CrossRefGoogle Scholar
  192. Seghrouchni R, Petekidis G, Vlassopoulos D, Fytas G, Semenov AN, Roovers J, Fleischer G (1998) Controlling the dynamics of soft spheres: from polymeric to colloidal behavior. Europhys Lett 42:271–276CrossRefGoogle Scholar
  193. Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43:657–669CrossRefGoogle Scholar
  194. Shi X, McKenna GB (2006) Mechanical hole-burning spectroscopy: demonstration of hole burning in the terminal relaxation regime. Phys Rev B 73:014203CrossRefGoogle Scholar
  195. Shin EJ, Jeong B, Brown HA, Koo BJ, Hedrick JL, Waymouth RM (2011) Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(ε-caprolactone)s. Macromolecules 44:2773–2779CrossRefGoogle Scholar
  196. Skorski S, Olmsted PD (2011) Loss of solutions in shear banding fluids driven by second normal stress differences. J Rheol 55:1219–1246CrossRefGoogle Scholar
  197. Smerk J, Grosberg AY (2015) Understanding the dynamics of rings in the melt in terms of the annealed tree model. J Phys Condens Matter 27:064117CrossRefGoogle Scholar
  198. Snijkers F, Vlassopoulos D (2011) Cone-partitioned-plate geometry for the ARES rheometer with temperature control. J Rheol 55:1167–1186CrossRefGoogle Scholar
  199. Snijkers F, van Ruymbeke E, Kim P, Lee H, Nikopoulou A, Chang T, Hadjichristidis N, Pathak J, Vlassopoulos D (2011) Architectural dispersity in model branched polymers: analysis and rheological consequences. Macromolecules 44:8631–8643CrossRefGoogle Scholar
  200. Snijkers F, Cho HY, Nese A, Matyjaszewski K, Pyckhout-Hintzen W, Vlassopoulos D (2014) Effects of core microstructure on structure and dynamics of star polymer melts: from polymeric to colloidal response. Macromolecules 47:5347–5356CrossRefGoogle Scholar
  201. Snijkers F, Pasquino R, Olmsted PD, Vlassopoulos D (2015) Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers. J Phys Condens Matter 27:473002CrossRefGoogle Scholar
  202. Sridhar T, Acharya M, Nguyen DA, Bhattacharjee PK (2014) On the extensional rheology of polymer melts and concentrated solutions. Macromolecules 47:379–386CrossRefGoogle Scholar
  203. Stiakakis E, Wilk A, Kohlbrecher J, Vlassopoulos D, Petekidis G (2010) Slow dynamics, aging and crystallization of concentrated multiarm stars. Phys Rev E 81:020402(R)CrossRefGoogle Scholar
  204. Sui C, McKenna GB (2007) Instability of entangled polymers in cone and plate rheometry. Rheol Acta 46:877–888CrossRefGoogle Scholar
  205. Sussman DM, Schweizer KS (2013) Entangled polymer chain melts: orientation and deformation dependent tube confinement and interchain entanglement elasticity. J Chem Phys 139:234904CrossRefGoogle Scholar
  206. Tanner RI, Keentok M (1983) Shear fracture in cone-plate rheometry. J Rheol 27:47–57CrossRefGoogle Scholar
  207. Tantakitti F, Boekhoven J, Wang X, Kazantsev RV, Yu T, Li J, Zhuang E, Zandi R, Ortony JH, Newcomb CJ, Palmer LC, Shekhawat GS, Olvera de la Cruz M, Schatz GC, Stupp SI (2016) Energy landscapes and functions of supramolecular systems. Nat Mater 15:469–477CrossRefGoogle Scholar
  208. Tezel AK, Oberhauser JP, Graham RS, Jagannathan K, McLeish TCB, Leal LG (2009) The nonlinear response of entangled star polymers to startup of shear flow. J Rheol 53:1193–1214CrossRefGoogle Scholar
  209. Tsalikis DG, Mavrantzas VG, Vlassopoulos D (2016) Threading of ring poly(ethylene oxide) molecules by linear chains in the melt. ACS Macro Lett 5:755–760CrossRefGoogle Scholar
  210. Tsalikis DG, Mavrantzas VG (2014) Analysis of slow modes in ring polymers: threading of rings controls long-time relaxation. ACS Macro Lett 3:763–766CrossRefGoogle Scholar
  211. Tsenoglou C (1991) Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers. Macromolecules 24:1762–1767CrossRefGoogle Scholar
  212. Tsolou G, Stratikis N, Baig C, Stephanou PS, Mavrantzas VG (2010) Melt structure and dynamics of unentangled polyethylene rings: Rouse theory, atomistic molecular dynamics simulation, and comparison with the linear analogues. Macromolecules 43:10692–10713CrossRefGoogle Scholar
  213. Truzzolillo D, Vlassopoulos D, Munam A, Gauthier M (2014) Depletion gels from dense soft colloids: rheology and thermoreversible melting. J Rheol 58:1441–1462CrossRefGoogle Scholar
  214. van Oosten ASG, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA (2016) Uncoupling shear and extensional elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Report. doi: 10.1038/srep19270 Google Scholar
  215. van Ruymbeke E, Keunings R, Bailly C (2005) Prediction of linear viscoelastic properties for polydisperse mixtures of entangled star and linear polymers: modified tube-based model and comparison with experimental results. J Non-Newtonian Fluid Mech 128:7–22CrossRefGoogle Scholar
  216. van Ruymbeke E, Bailly C, Keunings R, Vlassopoulos D (2006) A general methodology to predict the linear rheology of branched polymers. Macromolecules 39:6248–6259CrossRefGoogle Scholar
  217. van Ruymbeke E, Coppola S, Balacca L, Righi S, Vlassopoulos D (2010) Decoding the viscoelastic response of polydisperse star/linear polymer blends. J Rheol 54:507–538CrossRefGoogle Scholar
  218. van Ruymbeke E, Slot JJM, Kapnistos M, Steeman PAM (2013) Structure and rheology of polyamide 6 polymers from their reaction recipe. Soft Matter 9:6921–6935CrossRefGoogle Scholar
  219. van Ruymbeke E, Lee H, Chang T, Nikopoulou A, Hadjichristidis N, Snijkers F, Vlassopoulos D (2014) Molecular rheology of branched polymers: decoding and exploring the role of architectural dispersity through a synergy of anionic synthesis, interaction chromatography, rheometry and modeling. Soft Matter 10:4762–4777CrossRefGoogle Scholar
  220. Venerus DC, Shiu T-Y, Kashyap T, Hostettler J (2010) Continuous lubricated squeezing flow: a novel technique for equibiaxial elongational viscosity measurements on polymer melts. J Rheol 54:1083–1095CrossRefGoogle Scholar
  221. Vermant J, Moldenaers P, Mewis J, Ellis M, Garritano R (1997) Orthogonal superposition measurements using a rheometer equipped with a force rebalanced transducer. Rev Sci Instrum 68:4090–4096CrossRefGoogle Scholar
  222. Vermant J, Moldenaers P, Mewis J (1998) Orthogonal versus parallel superposition measurements. J Non-Newtonian Fluid Mech 79:173–189CrossRefGoogle Scholar
  223. Viovy JL, Rubinstein M, Colby RH (1991) Constraint release in polymer melts: tube reorganization versus tube dilation. Macromolecules 24:3587–3596CrossRefGoogle Scholar
  224. Vlassopoulos D, Fytas G, Pakula T, Roovers J (2001) Multiarm star polymer dynamics. J Phys Condens Matter 13:R855–R876CrossRefGoogle Scholar
  225. Vlassopoulos D, Cloitre M (2014) Tunable rheology of dense soft deformable colloids. Curr Opin Colloid Interface Sci 19:561–574CrossRefGoogle Scholar
  226. Vrentas CM, Graessley WW (1982) Study of shear stress relaxation in well-characterized polymer liquids. J Rheol 26:359–371CrossRefGoogle Scholar
  227. Wang S-Q (1999) Molecular transitions and dynamics at polymer/wall interfaces: origins of flow instabilities and wall slip. Adv Polym Sci 138:227–275CrossRefGoogle Scholar
  228. Wang S-Q, Ravindranath S, Wang Y, Boukany P (2007) New theoretical considerations in polymer rheology: elastic breakdown of chain entanglement network. J Chem Phys 127:06490Google Scholar
  229. Wang S-Q, Liu G, Cheng S, Boukany PE, Wang Y, Li X (2014) Letter to the editor: sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers. J Rheol 58:1059–1069CrossRefGoogle Scholar
  230. Wang S-Q (2015) Nonlinear rheology of entangled polymers at turning point. Soft Matter 11:1454–1458CrossRefGoogle Scholar
  231. Watanabe H (1997) Rheology of diblock copolymer micellar systems. Acta Polym 48:215–233CrossRefGoogle Scholar
  232. Watanabe H, Sato T, Osaki K, Hamersky MW, Chapman BR, Lodge TP (1998) Diffusion and viscoelasticity of copolymer micelles in a homopolymer matrix. Macromolecules 31:3740–3742CrossRefGoogle Scholar
  233. Watanabe H (1999) Viscoelasticity and dynamics of entangled polymers. Prog Polym Sci 24:1253–1403CrossRefGoogle Scholar
  234. Watanabe H, Ishida S, Matsumiya Y, Inoue T (2004) Test of full and partial tube dilation pictures in entangled blends of linear polyisoprenes. Macromolecules 37:6619–6631CrossRefGoogle Scholar
  235. Watanabe H, Matsumiya Y (2005) Rheology of diblock copolymer micellar dispersions having soft cores. Macromolecules 38:3808–3819CrossRefGoogle Scholar
  236. Watanabe H, Matsumiya Y, Ishida S, Takigawa T, Yamamoto T, Vlassopoulos D, Roovers J (2005) Nonlinear rheology of multiarm star chains. Macromolecules 38:7404–7415CrossRefGoogle Scholar
  237. Weissenberg K (1924) Ein neues Röntgengoniometer. Z Phys 23:229–238CrossRefGoogle Scholar
  238. Wen YH, Lu Y, Dobosz KM, Archer LA (2014) Structure, ion transport, and rheology of nanoparticle salts. Macromolecules 47:4479–4492CrossRefGoogle Scholar
  239. Wilner L, Jucknischke O, Richter D, Roovers J, Zhou LL, Toporowski PM, Fetters LJ, Huang JS, Lin MY, Hadjichristidis N (1994) Structural investigation of star polymers in solution by small-angle neutron scattering. Macromolecules 27:3821–3829CrossRefGoogle Scholar
  240. Winkler RG, Fedosov DA, Gompper G (2014) Dynamical and rheological properties of soft-colloid suspensions. Curr Opin Colloid Interface Sci 19:594–610CrossRefGoogle Scholar
  241. Witten TA, Pincus PA, Cates ME (1986) Macrocrystal ordering in star polymer solutions. Europhys Lett 2:137–140CrossRefGoogle Scholar
  242. Yamamoto T, Ohta Y, Takigawa T, Masuda T (2002) Stress relaxation of multi-arm star polystyrenes in the molten state. J Soc Rheol Jpn 30:129–132CrossRefGoogle Scholar
  243. Yan ZC, Costanzo S, Jeong Y, Chang T, Vlassopoulos D (2016) Linear and nonlinear shear rheology of a marginally entangled ring polymer. Macromolecules 49:1444–1453CrossRefGoogle Scholar
  244. Yaoita T, Isaki T, Masubuchi Y, Watanabe H, Ianniruberto G, Marrucci G (2012) Primitive chain network simulation of elongational flows of entangled linear chains: stretch/orientation-induced reduction of monomeric friction. Macromolecules 45:2773–2782CrossRefGoogle Scholar
  245. Zamponi M, Pyckhout-Hintzen W, Wischnewski A, Monkenbusch M, Willner L, Kali G, Richter D (2010) Molecular observation of branch point motion in star polymer melts. Macromolecules 43:518–524CrossRefGoogle Scholar
  246. Zhang B, Wepf R, Fischer K, Schmidt M, Besse S, Lindner P, King BT, Sigel R, Schurtenberger P, Talmon Y, Ding Y, Kröger M, Halperin A, Schlüter DA (2011) The largest synthetic structure with molecular precision: towards a molecular object. Angew Chem Int Ed 50:737–740CrossRefGoogle Scholar
  247. Zhou Q, Larson RG (2007) Direct molecular dynamics simulation of branch point motion in asymmetric star polymer melts. Macromolecules 40:3443–3449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Foundation for Research and Technology Hellas (FORTH)Institute of Electronic Structure & LaserHeraklionGreece
  2. 2.University of Crete, Department of Materials Science & TechnologyHeraklionGreece

Personalised recommendations