Skip to main content

Advertisement

Log in

Entropic, electrostatic, and interfacial regimes in concentrated disordered ionic emulsions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We develop a free energy model that describes two key thermodynamic properties, the osmotic pressure Π and the linear elastic shear modulus Gp (i.e. plateau storage modulus), of concentrated monodisperse emulsions which have isotropic, disordered, droplet structures, and are stabilized using ionic surfactants. This model effectively incorporates the concept of random close packing or jamming of repulsive spheres into a free energy F that depends on droplet volume fraction ϕ and shear strain γ both below and above the a critical jamming point ϕ c ≈ 0.646. This free energy has three terms: entropic, electrostatic, and interfacial (EEI). By minimizing F with respect to an average droplet deformation parameter that links all three terms, we show that the entropic term is dominant for ϕ well below ϕ c, the electrostatic term is dominant for ϕ near but below ϕ c, and the interfacial term dominates for larger ϕ. This EEI model describes measurements of Gp(ϕ) for charge-stabilized uniform emulsions having a wide range of droplet sizes, ranging from nanoscale to microscale, and it also is consistent with measurements of Π(ϕ). Moreover, it describes Gp(ϕ) for similar nanoemulsions after adding non-amphiphilic salt, when changes in the interfacial tension and the Debye screening length are properly taken into account. By unifying existing approaches, the EEI model predicts constitutive properties of concentrated ionic emulsions that have disordered, out-of-equilibrium structures through near-equilibrium free energy minimization, consistent with random driving Brownian excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bengtzelius U, Gotze W, Sjolander A (1984) Dynamics of supercooled liquids and the glass transition. J Phys C 17:5915–5934

    Article  Google Scholar 

  • Bernal JD, Mason J (1960) Packing of spheres: co-ordination of randomly packed spheres. Nature 188:910–911

    Article  Google Scholar 

  • Bibette J, Mason TG, Gang H, Weitz DA, Poulin P (1993) Structure of adhesive emulsions. Langmuir 9:3352–3356

    Article  Google Scholar 

  • Buzza DMA, Lu CY, Cates ME (1995) Linear shear rheology of incompressible foams. J Phys II France 5:37–52

    Article  Google Scholar 

  • Cockbain EG (1954) The adsorption of sodium dodecyl sulphate at the oil-water interface and application of Gibbs equation. Trans Faraday Soc 50:874–881

    Article  Google Scholar 

  • Datta SS, Gerrard DD, Rhodes TS, Mason TG, Weitz DA (2011) Rheology of attractive emulsions. Phys Rev E 84:041404

    Article  Google Scholar 

  • Desmond KW, Weeks ER (2014) Influence of particle size distribution on random close packing of spheres. Phys Rev E 90:022204

    Article  Google Scholar 

  • Finnery JL, Woodcock LV (2014) Renaissance of Bernal’s random close packing and hypercritical line in the theory of liquids. J Phys Condens Matter 26:463102

    Article  Google Scholar 

  • Hanson JA, Chang CB, Graves SM, Li Z, Mason TG, Deming TJ (2008) Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 455:85–88

    Article  Google Scholar 

  • Hegelson ME, Moran SE, An HZ, Doyle PS (2012) Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nat Mater 11:344–352

    Article  Google Scholar 

  • Ikeda A, Berthier L, Sollich P (2012) Unified study of glass and jamming rheology in soft particle systems. Phys Rev Lett 109:018301

    Article  Google Scholar 

  • Ikeda A, Berthier L, Sollich P (2013) Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter 9:7669–7683

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  • Jorjadze I, Pontani L-L, Brujic J (2013) Microscopic approach to the nonlinear elasticity of compressed emulsions. Phys Rev Lett 110:048302

    Article  Google Scholar 

  • Kanellopoulos AG, Owen MJ (1971) Adsorption of sodium dodecyl sulphate at the silicone fluid/water interface. Trans Faraday Soc 67:3127–3138

    Article  Google Scholar 

  • Lacasse MD, Grest GS, Levine D, Mason TG, Weitz DA (1996) Model for the elasticity of compressed emulsions. Phys Rev Lett 76:3448–3451

    Article  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Liu AJ, Nagel SR (2010) The jamming transition and the marginally jammed solid. Annu Rev Condens Matter Phys 1:347–369

    Article  Google Scholar 

  • Mason TG (1995). Rheology of monodisperse emulsions. Ph.D. Dissertation. Princeton University.

  • Mason TG, Scheffold F (2014) Crossover between entropic and interfacial elasticity and osmotic pressure in uniform disordered emulsions. Soft Matter 10:7109–7116

    Article  Google Scholar 

  • Mason TG, Bibette J, Weitz DA (1995) Elasticity of compressed emulsions. Phys Rev Lett 75:2051–2054

    Article  Google Scholar 

  • Mason TG, Krall AH, Gang H, Bibette J, Weitz DA (1996) Monodisperse emulsions: properties and uses. In: Becher P (ed) Encyclopedia of emulsion technology, vol 4. Marcel Dekker, Inc, New York, pp 299–336

    Google Scholar 

  • Mason TG, Lacasse MD, Grest GS, Levine D, Bibette J, Weitz DA (1997) Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys Rev E 56:3150–3166

    Article  Google Scholar 

  • Meleson K, Graves S, Mason TG (2004) Formation of concentrated nanoemulsions by extreme shear. Soft Materials 2:109–123

    Article  Google Scholar 

  • Morse DC, Witten TA (1993) Droplet elasticity in weakly compressed emulsions. Europhys Lett 22:549–555

    Article  Google Scholar 

  • O’Hern CS, Silbert LE, Liu AJ, Nagel SR (2003) Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E 68:011306

    Article  Google Scholar 

  • Princen HM, Kiss AD (1986) Rheology of foams and highly concentrated emulsions: III. Static shear modulus J Colloid Interface Sci 112:427–437

    Article  Google Scholar 

  • Pusey PN, van Megen W (1987) Observation of a glass transition in suspensions of spherical colloidal particles. Phys Rev Lett 59:2083–2086

    Article  Google Scholar 

  • Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Scheffold F, Mason TG (2009) Scattering from highly packed disordered colloids. J Phys Condens Matter 21:332102

    Article  Google Scholar 

  • Scheffold F, Cardinaux F, Mason TG (2013) Linear and nonlinear rheology of dense emulsions across the glass and the jamming regimes. J Phys Condens Matter 25:502101

    Article  Google Scholar 

  • Scheffold F, Wilking JN, Haberko J, Cardinaux F, Mason TG (2014) The jamming elasticity of emulsions stabilized by ionic surfactants. Soft Matter 10:5040–5044

    Article  Google Scholar 

  • Seth JR, Cloitre M, Bonnecaze RT (2006) Elastic properties of soft particle pastes. J Rheol 50:353–376

    Article  Google Scholar 

  • Snook I, van Megen W (1976) Prediction of ordered and disordered states in colloidal dispersions. J Chem Soc Faraday Trans 2: Mol Chem Phys 72:216–223

    Article  Google Scholar 

  • Taylor P (1998) Ostwald ripening in emulsions. Adv Colloid Interface Sci 75:107–163

    Article  Google Scholar 

  • Torquato S, Truskett TM, Debenedetti PG (2000) Is random close packing of spheres well defined? Phys Rev Lett 84:2064–2067

    Article  Google Scholar 

  • Umlong IM, Ismail K (2007) Micellization behaviour of sodium dodecyl sulfate in different electrolyte media. Colloid Surf A: Physicochem Eng Aspects 299:8–14

    Article  Google Scholar 

  • van Hecke M (2010) Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J Phys Condens Matter 22:033101

    Article  Google Scholar 

  • van Megen W, Snook I (1975) A hard sphere model for order-disorder transitions in colloidal dispersions. Chem Phys Lett 35:399–402

    Article  Google Scholar 

  • Wilking JN, Mason TG (2007) Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing. Phys Rev E 75:041407

    Article  Google Scholar 

  • Woodcock LV (1981) Glass transition in the hard-sphere model and Kauzmann’s paradox. Ann N Y Acad Sci 371:274–298

    Article  Google Scholar 

  • Zhang C, O’Donovan CB, Corwin EI, Cardinaux F, Mason TG, Möbius ME, Scheffold F (2015) Structure of marginally jammed polydisperse packings of frictionless spheres. Phys Rev E 91:032302

    Article  Google Scholar 

  • Zhu X, Fryd MM, Huang J-R, Mason TG (2012) Optically probing nanoemulsion compositions. Phys Chem Chem Phys 14:2455–2461

    Article  Google Scholar 

  • Zuidema H, Waters G (1941) Ring method for determination of interfacial tension. Ind Eng Chem Anal Ed 13:312–313

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the UCLA for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Mason.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Scheffold, F. & Mason, T.G. Entropic, electrostatic, and interfacial regimes in concentrated disordered ionic emulsions. Rheol Acta 55, 683–697 (2016). https://doi.org/10.1007/s00397-016-0946-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0946-3

Keywords

Navigation