Skip to main content
Log in

A hierarchical multi-mode MSF model for long-chain branched polymer melts part III: shear flows

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A novel hierarchical multi-mode molecular stress function (HMMSF) model for long-chain branched (LCB) polymer melts is proposed, which implements the basic ideas of (i) the pom-pom model, (ii) hierarchal relaxation, (iii) dynamic dilution, (iv) interchain pressure and (v) convective constraint release relaxation mechanism. Here, the capability of this approach is demonstrated in modelling the steady shear data of a broadly distributed long-chain branched polymer melt with only two non-linear parameters, a dilution modulus and a convective constraint release (CCR) parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bastian H (2001) Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows. Universität Stuttgart

  • Dealy JM, Larson RG (2006) Structure and rheology of molten polymers—from structure to flow behavior and back again. Hanser Publishers, Munich

    Book  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Ianniruberto G (2015) Quantitative appraisal of a new CCR model for entangled linear polymers. J Rheology 59:211–235. doi:10.1122/1.4903495

    Article  Google Scholar 

  • Ianniruberto G, Marrucci G (1996) On compatibility of the Cox-Merz rule with the model of Doi and Edwards. J Non-Newtonian Fluid Mech 65:241–246. doi:10.1016/0377-0257(96)01,433-4

    Article  Google Scholar 

  • Kraft M (1996) Untersuchungen zur scherinduzierten rheologischen Anisotropie von verschiedenen Polyethylen-Schmelzen. Diss Techn Wiss, ETH Zürich

    Google Scholar 

  • Marrucci G (1996) Dynamics of entanglements: a non-linear model consistent with the Cox-Merz rule. J Non-Newtonian Fluid Mech 62:279–289. doi:10.1016/0377-0257(95)01,407-1

    Article  Google Scholar 

  • Meissner J (1972) Modifications of the Weissenberg rheogoniometer for measurement of transient rheological properties of molten polyethylene under shear. Comparison with tensile data. J App Poly Sci 16:2877–2899. doi:10.1002/app.1972.070161114

    Article  Google Scholar 

  • Narimissa E, Rolón-Garrido VH, Wagner MH (2015) A hierarchical multi-mode MSF model for long-chain branched polymer melts part I: elongational flow. Rheol Acta 54:779–791. doi:10.1007/s00397-015-0879-2

    Article  Google Scholar 

  • Narimissa E, Rolón-Garrido VH, Wagner MH (2016) A hierarchical multi-mode MSF model for long-chain branched polymer melts part II: multiaxial extensional flows. Rheol Acta 55:327–333. doi:10.1007/s00397-016-0922-y

    Article  Google Scholar 

  • Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Münstedt H, Langouche F (2000) The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109. doi:10.1007/s003970050010

    Article  Google Scholar 

  • Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheology 45:1387–1412. doi:10.1122/1.1413503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Narimissa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narimissa, E., Wagner, M.H. A hierarchical multi-mode MSF model for long-chain branched polymer melts part III: shear flows. Rheol Acta 55, 633–639 (2016). https://doi.org/10.1007/s00397-016-0939-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0939-2

Keywords

Navigation