Skip to main content
Log in

Shear localisation in interfacial particle layers and its influence on Lissajous-plots

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Interfacial rheological measurements often show in their nonlinear Lissajous-plots rhombus or saddle-like shapes indicating complex local deformation behaviour. A strong interacting silica particle and an almost not interacting clay particle were studied in respect to their interfacial rheological properties. Large amplitude oscillation shear measurements were performed with a bicone geometry and combined with optical measurements, from which particle tracks were calculated. A correlation was found between the appearance of shear localisation and Lissajous-plot shapes. Silica particles showed shear localisation at the bicone edge and rhombic plateaus in the Lissajous-plot, while the shear localisation for the clay particles was observed at the cup’s wall as saddle-like shaped Lissajous-plots

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akartuna I, Tervoort E, Wong J C, Studart A R, Gauckler L J (2009) Macroporous polymers from particle-stabilized emulsions. Polymer 50:3645–3651

    Article  Google Scholar 

  • Arditty S, Whitby C P, Binks B P, Schmitt V, Leal-Calderon F (2003) Some general features of limited coalescence in solid-stabilized emulsions. The European Physical Journal E 11:273–281

    Article  Google Scholar 

  • Arditty S, Schmitt V, Giermanska-Kahn J, Leal-Calderon F (2004) Materials based on solid-stabilized emulsions. J Colloid Interface Sci 275:659–664

    Article  Google Scholar 

  • Bahtz J, Gunes D Z, Hughes E, Pokorny L, Riesch F, Syrbe A, Fischer P, Windhab E J (2015) Decoupling of mass transport mechanisms in the stagewise swelling of multiple emulsions. Langmuir 31:5265–5273

    Article  Google Scholar 

  • Benoy CJ, Elson LA, Schneider R (1972) Multiple emulsions, a suitable vehicle to provide sustained release of cancer chemotherapeutic agents. British Journal of Pharmacology 45:135P–136P

  • Binks B P (2002) Particles as surfactants–similarities and differences. Current Opinion in Colloid & Interface Science 7:21–41

    Article  Google Scholar 

  • Binks B P, Horozov T S (2005) Aqueous foams stabilized solely by silica nanoparticles. Angew Chem 117:3788–3791

    Article  Google Scholar 

  • Bos M A, van Vliet T (2001) Interfacial rheological properties of adsorbed protein layers and surfactants: a review. Adv Colloid Interf Sci 91:437–471

    Article  Google Scholar 

  • Brooks C F, Fuller G G, Frank C W, Robertson C R (1999) An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interface. Langmuir 15:2450–2459

    Article  Google Scholar 

  • Cervantes Martinez A, Rio E, Delon G, Saint-Jalmes A, Langevin D, Binks B P (2008) On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: link with microscopic surface properties. Soft Matter 4:1531–1535

    Article  Google Scholar 

  • Dickinson E (2007) Colloidal systems in foods containing droplets and bubbles. Woodhead Publishing Ltd, chap 6:153–184

    Google Scholar 

  • Dickinson E (2010) Food emulsions and foams: Stabilization by particles. Current Opinion in Colloid & Interface Science 15:40–49

    Article  Google Scholar 

  • Dickinson E (2011) Mixed biopolymers at interfaces: competitive adsorption and multilayer structures. Food Hydrocoll 25:1966–1983

    Article  Google Scholar 

  • Dimitriou C J, Ewoldt R H, McKinley G H (2013) Describing and prescribing the constitutive response of yield stress fluids using large amplitude oscillatory shear stress (LAOStress). J Rheol 57:27–70

    Article  Google Scholar 

  • Erni P, Fischer P, Windhab E J, Kusnezov V, Stettin H, Läuger J (2003) Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev Sci Instrum 74:4916–4924

    Article  Google Scholar 

  • Ewoldt R, Winter P, Maxey J, McKinley G (2010) Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol Acta 49:191–212

    Article  Google Scholar 

  • Gonzenbach U T, Studart A R, Tervoort E, Gauckler L J (2006) Stabilization of foams with inorganic colloidal particles. Langmuir 22:10 988:983–10

    Google Scholar 

  • Hyun K, Nam J G, Wilhelm M, Ahn K H, Lee S J (2003) Nonlinear response of complex fluids under LAOS (large amplitude oscillatory shear) flow. Korea-Australia Rheology Journal 15:97–105

    Google Scholar 

  • Hyun K, Wilhelm M, Klein C O, Cho K S, Nam J G, Ahn K H, Lee S J, Ewoldt R H, McKinley G H (2011) A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog Polym Sci 36:1697–1753

    Article  Google Scholar 

  • Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid S L, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  Google Scholar 

  • Jeon T Y, Hong J S (2014) Stabilization of O/W emulsion with hydrophilic/hydrophobic clay particles. Colloid Polym Sci 292:2939–2947

    Article  Google Scholar 

  • Kim J, Merger D, Wilhelm M, Helgeson M E (2014) Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear. J Rheol 58:1359– 1390

    Article  Google Scholar 

  • Kim J K, Rühs P A, Fischer P, Hong J S (2013) Interfacial localization of nanoclay particles in oil-in-water emulsions and its reflection in interfacial moduli. Rheol Acta 52:327–335

    Article  Google Scholar 

  • Klein C O, Spiess H W, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40:4250–4259

    Article  Google Scholar 

  • Lee S H, Yong Song H, Hyun K, Hyup Lee J (2015) Nonlinearity from FT-rheology for liquid crystal 8CB under large amplitude oscillatory shear (LAOS) flow. J Rheol 59:1–19

    Article  Google Scholar 

  • Marti-Mestres G, Nielloud F (2002) Emulsions in health care applications—an overview. J Dispers Sci Technol 23:419–439

    Article  Google Scholar 

  • McClements D J (2015) Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv Colloid Interf Sci 219:27–53

    Article  Google Scholar 

  • Merger D, Wilhelm M (2014) Intrinsic nonlinearity from LAOStrain-experiments on various strain- and stress-controlled rheometers: a quantitative comparison. Rheol Acta 53:621–634

    Article  Google Scholar 

  • Mermet-Guyennet M R B, Gianfelice de Castro J, Habibi M, Martzel N, Denn M M, Bonn D (2015) LAOS: the Strain softening/strain hardening paradox. J Rheol 59:21–32

    Article  Google Scholar 

  • Nam J, Ahn K, Lee S, Hyun K (2011) Strain stiffening of non-colloidal hard sphere suspensions dispersed in Newtonian fluid near liquid-and-crystal coexistence region. Rheol Acta 50:925– 936

    Article  Google Scholar 

  • Pawlik A, Cox P W, Norton I T (2010) Food grade duplex emulsions designed and stabilised with different osmotic pressures. J Colloid Interface Sci 352:59–67

    Article  Google Scholar 

  • Pickering S U (1907) CXCVI.-Emulsions. Journal of the Chemical Society. Transactions 91:2001–2021

    Google Scholar 

  • Ramsden W (1903) Separation of solids in the surface-layers of solutions and ’suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). – preliminary account. Proc R Soc Lond 72:156– 164

    Article  Google Scholar 

  • Ranjan G, Rao ASR (2000) Basic and Applied Soil Mechanics, 2nd edn. New Age International

  • Rogers S A, Lettinga M P (2012) A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): application to theoretical nonlinear models. J Rheol 56:1–25

    Article  Google Scholar 

  • Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011a) Oscillatory yielding of a colloidal star glass. Journal of Rheology 55:733– 752

  • Rogers SA, Erwin BM, Vlassopoulos D, Cloitre M (2011b) A sequence of physical processes determined and quantified in LAOS: application to a yield stress fluid. Journal of Rheology 55:435–458

  • Roussel N, Roy R L, Coussot P (2004) Thixotropy modelling at local and macroscopic scales. Journal of Non-Newtonian Fluid Mechanics 117:85–95

    Article  Google Scholar 

  • Rühs P A, Affolter C, Windhab E J, Fischer P (2013) Shear and dilatational linear and nonlinear subphase controlled interfacial rheology of β-lactoglobulin fibrils and their derivatives. J Rheol 57:1003–1022

    Article  Google Scholar 

  • Safouane M, Langevin D, Binks B P (2007) Effect of particle hydrophobicity on the properties of silica particle layers at the air-water interface. Langmuir 23:11 553:546–11

    Google Scholar 

  • Sagis L M C, Fischer P (2014) Nonlinear rheology of complex fluid-fluid interfaces. Current Opinion in Colloid & Interface Science 19:520–529

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J Y, White D J, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: An open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  Google Scholar 

  • Singh H (2011) Aspects of milk-protein-stabilised emulsions. Food Hydrocoll 25:1938–1944

    Article  Google Scholar 

  • Sorvari A, Saarinen T, Haavisto S, Salmela J, Vuoriluoto M, Seppälä J (2014) Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption. Carbohydrate Polymers 106:283–292

    Article  Google Scholar 

  • Tcholakova S, Denkov N D, Lips A (2008) Comparison of solid particles, globular proteins and surfactants as emulsifiers. Phys Chem Chem Phys 10:1608–1627

    Article  Google Scholar 

  • van der Vaart K, Rahmani Y, Zargar R, Hu Z, Bonn D, Schall P (2013) Rheology of concentrated soft and hard-sphere suspensions. J Rheol 57:1195–1209

    Article  Google Scholar 

  • Vandebril S, Franck A, Fuller G, Moldenaers P, Vermant J (2010) A double wall-ring geometry for interfacial shear rheometry. Rheol Acta 49:131–144

    Article  Google Scholar 

  • Windbergs M, Zhao Y, Heyman J, Weitz D A (2013) Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives. J Am Chem Soc 135:7933–7937

    Article  Google Scholar 

Download references

Acknowledgments

The Academy of Finland (project Rheology of Complex Fluids, ReCoF) is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian C. Birbaum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MOV 9.70 MB)

(MOV 8.44 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birbaum, F.C., Haavisto, S., Koponen, A. et al. Shear localisation in interfacial particle layers and its influence on Lissajous-plots. Rheol Acta 55, 267–278 (2016). https://doi.org/10.1007/s00397-016-0912-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-016-0912-0

Keywords

Navigation