Skip to main content
Log in

Rheological study on counter ion (X 2−)- and temperature-induced cationic micellar growth: a quantitative correlation between X 2− binding affinity to cationic micelles and X 2−- and temperature-induced micellar growth

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Rheological measurements on aqueous solutions containing a constant concentration of cetyltrimethylammonium bromide and increasing the concentration of counter ion additive, M2X, where X 2− represents 4-methoxysalicylate (4-MeOSa2−) and 3-, 4-methylsalicylate (3-, 4-MeSa2−), exhibit the presence of (i) spherical (SM), wormlike (WM) and branched (BWM) micelles for X 2− = 4-MeOSa2− and (ii) spherical, wormlike, branched micelles, small vesicles (SVs)/planar bilayer sheets (PBLS) and multilamellar vesicles (MLV) for X 2− = 3-, 4-MeSa2−. Zero shear viscosities measured with respect to M2X showed first and second maxima which were used to calculate flow activation energies (E a) at various M2X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Rahem R, Hoffmann H (2007) Novel viscoelastic systems from cationic surfactants and hydrophobic counterions: influence of surfactant chain length. J Colloid Interface Sci 312:146–156

    Article  Google Scholar 

  • Borak JB, Lee HY, Raghavan SR, Falvey D (2010) Application of photoinduced electron transfer (PET) deprotection for orthogonal photocontrol of aqueous solution viscosity. Chem Commun 46:8983–8985

    Article  Google Scholar 

  • Carver M, Smith TL, Gee JC, Delichere A, Caponetti E, Magid LJ (1996) Tuning of micellar structure and dynamics in aqueous salt-free solutions of cetyltrimethylammonium mono- and dichlorobenzoates. Langmuir 12:691–698

    Article  Google Scholar 

  • Cassidy MA, Warr GG (1996) Surface potentials and ion binding in tetradecyltrimethylammonium bromide/sodium salicylate micellar solutions. J Phys Chem 100:3237–3240

    Article  Google Scholar 

  • Cates ME (1990) Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). J Phys Chem 94:371–375

    Article  Google Scholar 

  • Davies TS, Ketner AM, Raghavan SR (2006) Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J Am Chem Soc 128:6669–6675

    Article  Google Scholar 

  • Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970

    Article  Google Scholar 

  • Ge W, Shi H, Zakin JL (2012) Rheo-optics of cationic surfactant micellar solutions with mixed aromatic counterions. Rheol Acta 51:249–258

    Article  Google Scholar 

  • Gradzielski M (2011) The rheology of vesicle and disk systems—relation between macroscopic behavior and microstructure. Curr Opinion Colloid Interfaces Sci 16:13–17

    Article  Google Scholar 

  • Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2(72):1525–1568

    Article  Google Scholar 

  • Kawasaki H, Imahayashi R, Maeda H (2002) Effects of hydrophobic counterions on the phase behavior of tetradecyldimethylhydroxylammonium chloride in aqueous solutions. Langmuir 18:8358–8363

    Article  Google Scholar 

  • Ketner AM, Kumar R, Davies TS, Elder PW, Raghavan SR (2007) A simple class of photorheological fluids: surfactant solutions with viscosity tunable by light. J Am Chem Soc 129:1553–1559

    Article  Google Scholar 

  • Khan MN (2010) A new semi-empirical kinetic method for the determination of ion exchange constants for the counterions of cationic micelles. Adv Colloid Interfaces Sci 159:160–179

    Article  Google Scholar 

  • Khan MN, Ismail E, Yusof NSM (2010) A new empirical kinetic method for the determination of ion-exchange constants for the counterions of cationic micelles: the rate of piperidinolysis and hydrolysis of anionic phenyl salicylate as the kinetic probes. Colloids Surf A 361:150–161

    Article  Google Scholar 

  • Koshy P, Verma G, Aswal VK, Venkatesh M, Hassan PA (2010) Viscoelastic fluids originated from enhanced solubility of sodium laurate in cetyltrimethylammonium bromide micelles through cooperative self-assembly. J Phys Chem B 114:10462–10470

    Article  Google Scholar 

  • Lin Z, Cai JJ, Scriven LE, Davis HT (1994) Spherical-to-wormlike micelle transition in CTAB solutions. J Phys Chem 98:5984–5993

    Article  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications (VCH, New York

    Google Scholar 

  • Magid LJ, Han Z, Warr GG, Cassidy MA, Butler PW, Hamilton WA (1997) Effect of counterion competition on micellar growth horizons for cetyltrimethylammonium micellar surfaces: electrostatics and specific binding. J Phys Chem B 101:7919–7927

    Article  Google Scholar 

  • Menger FM, Williams DY, Underwood AL, Anacker EW (1982) Effect of counterion geometry on cationic micelles. J Colloid Interface Sci 90:546–548

    Article  Google Scholar 

  • Mitchell DJ, Ninham BW (1981) Micelles, vesicles, and microemulsions. J Chem Soc Faraday Trans 2(77):601–629

    Article  Google Scholar 

  • Morariu S, Bercea M (2012) Effect of temperature and aging time on the rheological behavior of aqueous poly(ethylene glycol)/laponite RD dispersions. J Phys Chem B 116:48–54

    Article  Google Scholar 

  • Muriga S, Monduzzi M, Palazzo G (2012) Quantification of specific anion binding to non-ionic Triton X-100 micelles. Langmuir 28:1283–1289

    Article  Google Scholar 

  • Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N (2009) Linear-to-branched micelle transition: a rheometry and diffusing wave spectroscopy (DWS) study. Langmuir 25:716–723

    Article  Google Scholar 

  • Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N (2010) Effect of counterion binding efficiency on structure and dynamics of wormlike micelles. Langmuir 26:7045–7053

    Article  Google Scholar 

  • Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17:300–306

    Article  Google Scholar 

  • Raghavan SR, Edlund H, Kaler EW (2002) Cloud-point phenomena in wormlike micellar systems containing cationic surfactant and salt. Langmuir 18:1056–1064

    Article  Google Scholar 

  • Rao URK, Manohar C, Valaulikar BS, Iyer RM (1986) On the origin of viscoelasticity in micellar solutions of cetyltrimethylammonium bromide and sodium salicylate. J Chem Soc, Chem Commun 379–381

  • Rao URK, Manohar C, Valaulikar BS, Iyer RM (1987) Micellar chain model for the origin of the viscoelasticity in dilute surfactant solutions. J Phys Chem 91:3286–3291

    Article  Google Scholar 

  • Razak NA, Khan MN (2013) Determination of flow activation energy at viscosity maximum for spherical and wormlike micelles of different lengths and flexibility. Rheol Acta 52:927–937

    Article  Google Scholar 

  • Razak NA, Khan MN (2014) Kinetics and mechanism of nanoparticles-catalyzed piperidinolysis of anionic phenyl salicylate. Sci World J 604139:1–7. doi:10.1155/2014/604139

    Article  Google Scholar 

  • Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions: model systems for rheological research. Mol Phys 74:933–973

    Article  Google Scholar 

  • Romsted LS (2007) Do amphiphile aggregate morphologies and interfacial compositions depend primarily on interfacial hydration and ion-specific interactions? the evidence from chemical trapping. Langmuir 23:414–424

    Article  Google Scholar 

  • Shikata T, Hirata H, Kotaka T (1989) Micelle formation of detergent molecules in aqueous media. 3. Viscoelastic properties of aqueous cetyltrimethylammonium romide-salicylic acid solutions. Langmuir 5:398–405

    Article  Google Scholar 

  • Sreejith L, Parathakkat S, Nair SM, Kumar S, Varma G, Hassan PA, Talmon Y (2011) Octanol-triggered self-assemblies of the CTAB/KBr system: a microstructural study. J Phys Chem B 115:464–470

    Article  Google Scholar 

  • Staurt MCA, Boekema EJ (2007) Two distinct mechanisms of vesicle-to-micelle and micelle-to-vesicle transition are mediated by the packing parameter of phospholipid-detergent systems. Biochim Biophys Acta 1768:2681–2689

    Article  Google Scholar 

  • Vermathen M, Stiles P, Bachofer SJ, Simonis U (2002) Investigation of monofluoro-substituted benzoates at the tetradecyltrimethylammonium micellar interface. Langmuir 18:1030–1042

    Article  Google Scholar 

  • Yusof NSM, Khan MN (2012) Quantitative correlation of counterion (X) affinity to ionic micelles and X- and temperature-induced micellar growth (spherical-wormlike micelles-vesicles) for X = 5-methyl- and 5-methoxysalicylate ions. J Phys Chem B 116:2065–2074

    Article  Google Scholar 

  • Zhang J, Liu S (2011) Kinetics of thermo-induced micelle-to-vesicle transitions in a catanionic surfactant system investigated by stopped-flow temperature jump. Phys Chem Chem Phys 13:12545–12553

    Article  Google Scholar 

  • Zheng Y, Lin Z, Zakin JL, Talmon Y, Davis HT, Scriven LE (2000) Cryo-TEM imaging the flow-induced transition from vesicles to threadlike micelles. J Phys Chem B 104:5263–5271

    Article  Google Scholar 

  • Ziserman L, Abezgauz L, Ramon O, Raghavan SR, Danino D (2009) Origins of the viscosity peak in wormlike micellar solutions. 1. Mixed catanionic surfactants. A cryo-transmission electron microscopy study. Langmuir 25:10483–10489

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Ministry of Higher Education (MOHE) and University of Malaya (UM) for the financial assistance through research grants UM.C/HIR/MOHE/SC/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Niyaz Khan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razak, N.A., Yusof, N.S.M. & Khan, M.N. Rheological study on counter ion (X 2−)- and temperature-induced cationic micellar growth: a quantitative correlation between X 2− binding affinity to cationic micelles and X 2−- and temperature-induced micellar growth. Rheol Acta 55, 125–136 (2016). https://doi.org/10.1007/s00397-015-0899-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0899-y

Keywords

Navigation