Rheologica Acta

, Volume 55, Issue 6, pp 511–526 | Cite as

Effect of tube diameter and capillary number on platelet margination and near-wall dynamics

Original Contribution

Abstract

I investigate the effect of tube diameter D and red blood cell capillary number Ca (i.e. the ratio of viscous to elastic forces) on platelet margination in blood flow at ≈37 % tube haematocrit. The system is modelled as three-dimensional suspension of deformable red blood cells and nearly rigid platelets using a combination of the lattice-Boltzmann, immersed boundary and finite element methods. Results of simulations during the dynamics before the steady state has been reached show that a non-diffusive radial platelet transport facilitates margination. This non-diffusive effect is important near the edge of the cell-free layer, but only for Ca > 0.2, when red blood cells are tank-treading. I also show that platelet trapping in the cell-free layer is reversible for Ca ≤ 0.2. Margination is essentially independent of Ca only for the smallest investigated tube diameter (D = 10 μm). Once platelets have reached the cell-free layer, they tend to slide rather than tumble. The tumbling rate is essentially independent of Ca but increases with D. Strong confinement suppresses tumbling due to the relatively small cell-free layer thickness at ≈ 37 % tube haematocrit.

Keywords

Platelet margination Red blood cell Cell-free layer Lattice-Boltzmann method Immersed boundary method Simulation 

References

  1. Aarts PA, Bolhuis PA, Sakariassen KS, Heethaar RM, Sixma JJ (1983) Red blood cell size is important for adherence of blood platelets to artery subendothelium. Blood 62(1):214Google Scholar
  2. Aarts PA, Heethaar RM, Sixma JJ (1984) Red blood cell deformability influences platelets-vessel wall interaction in flowing blood. Blood 64(6):1228Google Scholar
  3. Aarts PA, SAvd Broek, Prins GW, Kuiken GDC, Sixma JJ, Heethaar RM (1988) Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscl Throm Vas 8(6):819–824CrossRefGoogle Scholar
  4. Aidun CK, Clausen JR (2010) Lattice-boltzmann method for complex flowzs. Annu Rev Fluid Mech 42:439–472CrossRefGoogle Scholar
  5. AlMomani T, Udaykumar HS, Marshall JS, Chandran KB (2008) Micro-scale Dynamic Simulation of Erythrocyte-Platelet Interaction in Blood Flow. Ann Biomed Eng 36(6):905–920CrossRefGoogle Scholar
  6. Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. i. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511–525CrossRefGoogle Scholar
  7. Bilsker DL, Waters CM, Kippenhan JS, Eckstein EC (1989) A freeze-capture method for the study of platelet-sized particle distributions. Biorheology 26(6):1031Google Scholar
  8. Breugel HFV, Groot PGD, Heethaar RM, Sixma JJ (1992) Role of plasma viscosity in platelet adhesion. Blood 80(4):953Google Scholar
  9. Cadroy Y, Hanson SR (1990) Effects of red blood cell concentration on hemostasis and thrombus formation in a primate model. Blood 75(11):2185Google Scholar
  10. Charrier J, Shrivastava S, Wu R (1989) Free and constrained inflation of elastic membranes in relation to thermoforming—non-axisymmetric problems. J Strain Anal Eng 24(2):55–74CrossRefGoogle Scholar
  11. Crowl LM, Fogelson AL (2010) Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int J Numer Meth Biomed Engng 26:471–487CrossRefGoogle Scholar
  12. Doddi SK, Bagchi P (2009) Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys Rev E 79(4):046,318CrossRefGoogle Scholar
  13. Doggett TA, Girdhar G, Lawshé A, Schmidtke DW, Laurenzi IJ, Diamond SL, Diacovo TG (2002) Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIb [alpha]-vWF tether bond. Biophys J 83(1):194–205CrossRefGoogle Scholar
  14. Dupin MM, Halliday I, Care CM, Alboul L, Munn LL (2007) Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys Rev E 75(6):066,707CrossRefGoogle Scholar
  15. Eckstein EC, Belgacem F (1991) Model of platelet transport in flowing blood with drift and diffusion terms. Biophys J 60(1):53–69CrossRefGoogle Scholar
  16. Eckstein EC, Tilles AW, Millero FJ, et al. (1988) Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvasc Res 36(1):31–39CrossRefGoogle Scholar
  17. Eckstein EC, Koleski JF, Waters CM (1989) Concentration profiles of 1 and 2.5 micrometer beads during blood flow: hematocrit effects. T Am Soc Art Int Org 35:188–190CrossRefGoogle Scholar
  18. Eggleton CD, Popel AS (1998) Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids 10(8):1834–1845CrossRefGoogle Scholar
  19. Evans E (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14 (12):923–931CrossRefGoogle Scholar
  20. Evans E, Fung YC (1972) Improved measurements of the erythrocyte geometry. Microvasc Res 4(4):335–347CrossRefGoogle Scholar
  21. Evans EA, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRCGoogle Scholar
  22. Fedosov DA, Pan W, Caswell B, Gompper G, Karniadakis GE (2011) Predicting human blood viscosity in silico. Proc Natl Acad Sci USA 108(29):11,772–11,777CrossRefGoogle Scholar
  23. Fedosov DA, Noguchi H, Gompper G (2014a) Multiscale modeling of blood flow: from single cells to blood rheology. Biomech Model Mechanobiol 13(2):239–258. doi:10.1007/s10237-013-0497-9 CrossRefGoogle Scholar
  24. Fedosov DA, Peltomäki M, Gompper G (2014b) Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 10(24):4258–4267CrossRefGoogle Scholar
  25. Fåhræus R, Lindqvist T (1931) The viscosity of blood in narrow capillary tubes. Am J Physiol 96:562–568Google Scholar
  26. Fogelson AL, Guy RD (2008) Immersed-boundary-type models of intravascular platelet aggregation. Comput Methods Appl Mech Engrg 197(25-28):2087–2104CrossRefGoogle Scholar
  27. Fogelson AL, Neeves KB (2015) Fluid mechanics of blood clot formation. Annu Rev Fluid Mech 47 (1):377–403CrossRefGoogle Scholar
  28. Freund JB (2014) Numerical simulation of flowing blood cells. Ann Rev Fluid Mech 46(1):67–95CrossRefGoogle Scholar
  29. Frijters S, Krüger T, Harting J (2015) Parallelised Hoshen-Kopelman algorithm for lattice-Boltzmann simulations. Comput Phys Commun 189:92–98CrossRefGoogle Scholar
  30. Goldsmith HL (1971) Red cell motions and wall interactions in tube flow. Fed Proc 30:1578–1588Google Scholar
  31. Goldsmith HL, Mason SG (1967) The microrheology of dispersions. In: Rheology: Theory and Application, Academic Press, vol 4, pp 85–250Google Scholar
  32. Goldsmith HL, Turitto VT (1986) Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on rheology of the international committee on thrombosis and haemostasis. Thromb Haemostasis 55(3):415– 435Google Scholar
  33. Gompper G, Schick M (2008) Soft Matter: Lipid Bilayers and Red Blood Cells. Wiley-VCHGoogle Scholar
  34. Gross M, Krüger T, Varnik F (2014) Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects. Soft Matter 10(24):4360–4372. doi:10.1039/C4SM00081A CrossRefGoogle Scholar
  35. Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. P Roy Soc Lond A Mat 102 (715):161–179CrossRefGoogle Scholar
  36. Joist JH, Bauman JE, Sutera SP (1998) Platelet adhesion and aggregation in pulsatile shear flow: effects of red blood cells. Thromb Res 92(6):S47–S52CrossRefGoogle Scholar
  37. Katanov D, Gompper G, Fedosov DA (2015) Microvascular blood flow resistance: Role of red blood cell migration and dispersion. Microvasc Res 99:57–66. doi:10.1016/j.mvr.2015.02.006 CrossRefGoogle Scholar
  38. Krüger T (2011) Computer simulation study of collective phenomena in dense suspensions of red blood cells under shear. Dissertation, Ruhr University Bochum, BochumGoogle Scholar
  39. Krüger T, Varnik F, Raabe D (2011) Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice boltzmann finite element method. Comput Math Appl 61:3485–3505CrossRefGoogle Scholar
  40. Krüger T, Gross M, Raabe D, Varnik F (2013) Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. Soft Matter 9(37):9008–9015CrossRefGoogle Scholar
  41. Krüger T, Holmes D, Coveney PV (2014) Deformability-based red blood cell separation in deterministic lateral displacement devices—A simulation study. Biomicrofluidics 8(5):054,114CrossRefGoogle Scholar
  42. Kulkarni S, Dopheide SM, Yap CL, Ravanat C, Freund M, Mangin P, Heel KA, Street A, Harper IS, Lanza F, et al. (2000) A revised model of platelet aggregation. J Clin Invest 105(6):783– 791CrossRefGoogle Scholar
  43. Kumar A, Graham MD (2012a) Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter 8(41):10,536–10,548CrossRefGoogle Scholar
  44. Kumar A, Graham MD (2012b) Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett 109(10):108,102CrossRefGoogle Scholar
  45. Ladd AJC (1994) Numerical simulations of particulate suspensions via a discretized boltzmann equation. Part 1. Theoretical foundation. J Fluid Mech 271:285–309CrossRefGoogle Scholar
  46. Lei H, Fedosov DA, Caswell B, Karniadakis GE (2013) Blood flow in small tubes: quantifying the transition to the non-continuum regime. J Fluid Mech 722:214–239CrossRefGoogle Scholar
  47. MacMeccan RM, Clausen JR, Neitzel GP, Aidun CK (2009) Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J Fluid Mech 618:13–39CrossRefGoogle Scholar
  48. McWhirter JL, Noguchi H, Gompper G (2009) Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. P Natl Acad Sci 106(15):6039–6043CrossRefGoogle Scholar
  49. Müller K, Fedosov DA, Gompper G (2014) Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep:4Google Scholar
  50. Peerschke EIB, Silver RT, Weksler B, Grigg SE, Savion N, Varon D (2004) Ex vivo evaluation of erythrocytosis-enhanced platelet thrombus formation using the cone and plate (let) analyzer: effect of platelet antagonists. Br J Haematol 127(2):195–203CrossRefGoogle Scholar
  51. Peskin CS (1972) Flow patterns around heart valves: a digital computer method for solving the equations of motion. Sue Golding Graduate Division of Medical Sciences, Albert Einstein College of Medicine, Yeshiva UniversityGoogle Scholar
  52. Peskin CS (2002) The immersed boundary method. Acta Numerica 11:479–517CrossRefGoogle Scholar
  53. Qian YH, d’Humières D, Lallemand P (1992) Lattice BGK models for navier-stokes equation. Europhys Lett 17:479–484CrossRefGoogle Scholar
  54. Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143CrossRefGoogle Scholar
  55. Reasor DA, Mehrabadi M, Ku DN, Aidun CK (2013) Determination of critical parameters in platelet margination. Ann Biomed Eng 41(2):238–249CrossRefGoogle Scholar
  56. Robertson A, Sequeira A, Kameneva M (2007) Hemorheology. In: Hemodynamical Flows, Oberwolfach Seminars, Birkhäuser Basel, pp 63–120Google Scholar
  57. Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13–137CrossRefGoogle Scholar
  58. Shan X, Chen H (1993) Lattice boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47(3): 1815CrossRefGoogle Scholar
  59. Shrivastava S, Tang J (1993) Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming. J Strain Anal Eng 28(1):31–51CrossRefGoogle Scholar
  60. Skalak R, Branemark PI (1969) Deformation of red blood cells in capillaries. Science 164(3880):717–719CrossRefGoogle Scholar
  61. Skalak R, Tozeren A, Zarda RP, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13(3):245– 264CrossRefGoogle Scholar
  62. Succi S (2001) The Lattice Boltzmann equation for fluid dynamics and beyond. Oxford University PressGoogle Scholar
  63. Sui Y, Chew YT, Roy P, Low HT (2008) A hybrid method to study flow-induced deformation of three-dimensional capsules. J Comput Phys 227(12):6351–6371CrossRefGoogle Scholar
  64. Tangelder GJ, Slaaf DW, Teirlinck HC, Alewijnse R, Reneman RS (1982) Localization within a thin optical section of fluorescent blood platelets flowing in a microvessel. Microvasc Res 23(2):214–230CrossRefGoogle Scholar
  65. Teirlinck HC, Tangelder GJ, Slaaf DW, Muijtjens AMM, Arts T, Reneman RS (1984) Orientation and diameter distribution of rabbit blood platelets flowing in small arterioles. Biorheology 21(3):317–331Google Scholar
  66. Thompson AJ, Mastria EM, Eniola-Adefeso O (2013) The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 34(23):5863–5871CrossRefGoogle Scholar
  67. Tilles AW, Eckstein EC (1987) The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc Res 33(2):211–223CrossRefGoogle Scholar
  68. Turitto VT, Baumgartner HR (1975) Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res 9(3):335–344CrossRefGoogle Scholar
  69. Turitto VT, Baumgartner HR (1979) Platelet interaction with subendothelium in flowing rabbit blood: effect of blood shear rate. Microvasc Res 17(1):38–54CrossRefGoogle Scholar
  70. Turitto VT, Goldsmith HL (1992) Rheology, transport, and thrombosis in the circulation. Vascular Medicine: A Textbook of Vascular Biology and Diseases Boston, Mass: Little, Brown & CoGoogle Scholar
  71. Turitto VT, Weiss HJ (1980) Red blood cells: their dual role in thrombus formation. Science 207(4430):541–543CrossRefGoogle Scholar
  72. Turitto VT, Benis AM, Leonard EF (1972) Platelet diffusion in flowing blood. Ind Eng Chem Fundam 11(2):216–223CrossRefGoogle Scholar
  73. Vahidkhah K, Diamond S, Bagchi P (2014) Platelet dynamics in three-dimensional simulation of whole blood. Biophys J 106(11):2529–2540CrossRefGoogle Scholar
  74. Waters CM, Eckstein EC (1990) Concentration profiles of platelet-sized latex beads for conditions relevant to hollow-fiber hemodialyzers. Artif Organs 14(1):7–13CrossRefGoogle Scholar
  75. Yeh C, Eckstein EC (1994) Transient lateral transport of platelet-sized particles in flowing blood suspensions. Biophys J 66(5):1706–1716CrossRefGoogle Scholar
  76. Zhang J, Johnson PC, Popel AS (2007) An immersed boundary lattice boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows. Phys Biol 4(4):285–295CrossRefGoogle Scholar
  77. Zhao H, Shaqfeh ESG (2011) Shear-induced platelet margination in a microchannel. Phys Rev E 83 (6):061,924CrossRefGoogle Scholar
  78. Zhao R, Kameneva MV, Antaki JF (2007) Investigation of platelet margination phenomena at elevated shear stress. Biorheology 44(3):161–177Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of EngineeringThe University of EdinburghEdinburghUK

Personalised recommendations