Rheology of a dilute viscoelastic suspension of spheroids in unconfined shear flow

Abstract

The rheology of a dilute viscoelastic suspension of spheroids subjected to unconfined shear flow is studied by numerical simulations. To highlight the effect of the suspending fluid rheology, two viscoelastic constitutive equations, i.e., the Giesekus and the Phan-Thien-Tanner models, have been selected. Simulations are performed for a spheroid with two aspect ratios (4 and 8). The spherical particle case is also investigated for comparison. The Deborah number D e is varied between 0 and 4. The particle contribution to the viscosity is weakly affected by the particle shape and orientation. In contrast, spheroids oriented with major axis out of the vorticity direction significantly reduce the particle contribution to the first and second normal stress difference. The maximum reduction is found in the flow-alignment regime. Simulations of the transient dynamics of the suspension show that the initial distribution of the particle orientation has a remarkable influence on the evolution of the stress coefficients. The time needed to obtain steady-state rheological properties is at least one order of magnitude higher than the fluid characteristic time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aral B K, Kalyon D M (1997) Viscoelastic material functions of noncolloidal suspensions with spherical particles. J Rheol 41:599–620

    Article  Google Scholar 

  2. Bartram E, Goldsmith H L, Mason S G (1975) Particle motions in non-Newtonian media. III. Further observations in elasticoviscous fluids. Rheol Acta 14:776–782

    Article  Google Scholar 

  3. Batchelor G K (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Article  Google Scholar 

  4. Bogaerds A N, Grillet A M, Peters G W M, Baaijens F P T (2002) Stability analysis of polymer shear flows using the extended pom-pom constitutive equations. J Non-Newtonian Fluid Mech 108:187–208

    Article  Google Scholar 

  5. Brooks A N, Hughes T J R (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Meth Appl Mech Eng 32:199–259

    Article  Google Scholar 

  6. Chan D, Powell R L (1984) Rheology of suspensions of spherical particles in a Newtonian and a non-Newtonian fluid. J Non-Newtonian Fluid Mech 15:165–179

    Article  Google Scholar 

  7. D’Avino G, Maffettone P L (2015) Particle dynamics in viscoelastic liquids. J Non-Newtonian Fluid Mech 215:80–104

    Article  Google Scholar 

  8. D’Avino G, Hulsen M A, Snijkers F, Vermant J, Greco F, Maffettone P L (2008) Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I: Simulation results. J Rheol 52:1331–1346

    Article  Google Scholar 

  9. D’Avino G, Greco F, Hulsen M A, Maffettone P L (2013) Rheology of viscoelastic suspensions of spheres under small and large amplitude oscillatory shear by numerical simulations. J Rheol 57:813–839

    Article  Google Scholar 

  10. D’Avino G, Hulsen M A, Greco F, Maffettone P L (2014) Bistability and metabistability scenario in the dynamics of an ellipsoidal particle in a sheared viscoelastic fluid. Phys Rev E 89 (043):006

    Google Scholar 

  11. Denn M M, Morris J F (2014) Rheology of non-Brownian suspensions. Annu Rev Chem Biomol Eng 5:203–228

    Article  Google Scholar 

  12. Einstein A (1906) Eine Neue Bestimmung der Molekudimensionen. Ann Phys 19:289–306

    Article  Google Scholar 

  13. Einstein A (1911) Berichtigung zu Meiner Arbeit: Eine Neue Bestimmung der Molekuldimensionen. Ann Phys 34:591–592

    Article  Google Scholar 

  14. Fattal R, Kupferman R (2004) Constitutive laws for the matrix-logarithm of the conformation tensor. J Non-Newtonian Fluid Mech 123:281–285

    Article  Google Scholar 

  15. Greco F, D’Avino G, Maffettone P L (2005) Stress tensor of a dilute suspension of spheres in a viscoelastic liquid. Phys Rev Lett 95(001):246

    Google Scholar 

  16. Greco F, D’Avino G, Maffettone P L (2007) Rheology of a dilute suspension of rigid spheres in a second order fluid. J Non-Newtonian Fluid Mech 147:1–10

    Article  Google Scholar 

  17. Guenette R, Fortin M (1995) A new mixed finite element method for computing viscoelastic flows. J Non-Newtonian Fluid Mech 60:27–52

    Article  Google Scholar 

  18. Gunes D Z, Scirocco R, Mewis J, Vermant J (2008) Flow-induced orientation of non-spherical particles: effect of aspect ratio and medium rheology. J Non-Newtonian Fluid Mech 155:39–50

    Article  Google Scholar 

  19. Haleem B A, Nott P R (2009) Rheology of particle-loaded semi-dilute polymer solutions. J Rheol 53:383–400

    Article  Google Scholar 

  20. Harlen O G, Koch D L (1993) Simple shear flow of a suspension of fibres in a dilute polymer solution at high Deborah number. J Fluid Mech 252:187–207

    Article  Google Scholar 

  21. Housiadas K D, Tanner R I (2009) On the rheology of a dilute suspension of rigid spheres in a weakly viscoelastic matrix fluid. J Non-Newtonian Fluid Mech 162(1):88–92

    Article  Google Scholar 

  22. Hu H H, Patankar N A, Zhu M Y (2001) Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique. J Comp Phys 169:427–462

    Article  Google Scholar 

  23. Hulsen M A, Fattal R, Kupferman R (2005) Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J Non-Newtonian Fluid Mech 127(1):27–39

    Article  Google Scholar 

  24. Iso Y, Koch D L, Cohen C (1996a) Orientation in simple shear flow of semi-dilute fiber suspensions 1. Weakly elastic fluids. J Non-Newtonian Fluid Mech 62:115–134

    Article  Google Scholar 

  25. Iso Y, Koch D L, Cohen C (1996b) Orientation in simple shear flow of semi-dilute fiber suspensions 2. Highly elastic fluids. J Non-Newtonian Fluid Mech 62:135–153

    Article  Google Scholar 

  26. Jeffery G B (1922) The motion of ellipsoidal particles immersed in a viscous fluid. In: Proc R Soc London, vol 102, pp 161– 179

  27. Koch D L, Subramanian G (2006) The stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity field. J Non-Newtonian Fluid Mech 138(2):87–97

    Article  Google Scholar 

  28. Larson R (1988) Constitutive Equations for Polymer Melts and Solutions. Butterworth-Heinemann

  29. Larson R (1999) The structure and rheology of complex fluids. Oxfor University Press, New York

    Google Scholar 

  30. Leal L G (1975) The slow motion of slender rod-like particles in a second-order fluid. J Fluid Mech 69:305–337

    Article  Google Scholar 

  31. Macosko C (1994) Rheology: principles, measurements and applications. John Wiley and Sons, New York

    Google Scholar 

  32. Mewis J, Wagner N (2012) Colloidal suspension rheology. Cambridge University Press, New York

    Google Scholar 

  33. Mueller S, Llewellin E W, Mader H M (2010) The rheology of suspensions of solid particles. In: Proc R Soc London, vol 466, pp 1201–1228

  34. Nguyen-Hoang H, Phan-Thien N, Khoo B C, Fan X J, Dou H S (2008) Completed double layer boundary element method for periodic fibre suspension in viscoelastic fluid. Chem Eng Sci 63:3898–3908

    Article  Google Scholar 

  35. Rapaport D C (1995) The art of molecular dynamics simulation. Cambridge University Press, New York

    Google Scholar 

  36. Schaink H M, Slot J J M, Jongschaap R J J, Mellema J (2000) The rheology of systems containing rigid spheres suspended in both viscous and viscoelastic media, studied by Stokesian dynamics simulations. J Rheol 44:473–498

    Article  Google Scholar 

  37. Tanner R I, Dai S C, Qi F, Housiadas K D (2013) Viscometric functions of semi-dilute non-colloidal suspensions of spheres in a viscoelastic matrix. J Non-Newtonian Fluid Mech 201:130–134

    Article  Google Scholar 

  38. Yu Z, Shao X (2007) A direct-forcing fictitious domain method for particulate flows. J Comp Phys 227:292– 314

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has been supported by the RoDyMan project, which has received funding from the European Research Council (FP7 IDEAS) under Advanced Grant agreement number 320992. The authors are solely responsible for its content. It does not represent the opinion of the European Community and the Community is not responsible for any use that might be made of the information contained therein.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaetano D’Avino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Avino, G., Greco, F. & Maffettone, P.L. Rheology of a dilute viscoelastic suspension of spheroids in unconfined shear flow. Rheol Acta 54, 915–928 (2015). https://doi.org/10.1007/s00397-015-0881-8

Download citation

Keywords

  • Spheroid
  • Rheology
  • Viscoelasticity
  • Numerical simulations
  • Dilute suspension