Skip to main content
Log in

Dynamic and rheological properties of soft biological cell suspensions

Rheologica Acta Aims and scope Submit manuscript

Cite this article

Abstract

Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abkarian M, Faivre M, Viallat A (2007) Swinging of red blood cells under shear flow. Phys Rev Lett 98:188, 302

    Article  Google Scholar 

  • Aingaran M, Zhang R, Law SKY, Peng ZL, Undisz A, Meyer E, Diez-Silva M, Burke TA, Spielmann T, Lim CT, Suresh S, Dao M, Marti M (2012) Host cell deformability is linked to transmission in the human malaria parasite plasmodium falciparum. Cell Microbiol 14:983–993

    Article  Google Scholar 

  • AlMomani T, Udaykumar H, Marshall J, Chandran K (2008) Micro-scale dynamic simulation of erythrocyte–platelet interaction in blood flow. Ann Biomed Eng 36(6):905–920

    Article  Google Scholar 

  • Apostolidis AJ, Beris AN (2014) Modeling of the blood rheology in steady-state shear flows. J Rheol 58:607–633

    Article  Google Scholar 

  • Apostolidis AJ, Armstrong MJ, Beris AN (2015) Modeling of human blood rheology in transient shear flows. J Rheol 59:275–298

    Article  Google Scholar 

  • Atzberger PJ, Kramer PR, Peskin CS (2007) A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales. J Comput Phys 224:1255–1292

    Article  Google Scholar 

  • Bagchi P, Kalluri RM (2009) Dynamics of nonspherical capsules in shear flow. Phys Rev E 80:016307

    Article  Google Scholar 

  • Bagchi P, Kalluri RM (2010) Rheology of a dilute suspension of liquid-filled elastic capsules. Phys Rev E 81:056320

    Article  Google Scholar 

  • Bagchi P, Yazdani A (2012) Analysis of membrane tank-tread of nonspherical capsules and red blood cells. Eur Phys J E 35:103

    Article  Google Scholar 

  • Barabino GA, Platt MO, Kaul DK (2010) Sickle cell biomechanics. Annu Rev Biomed Eng 12:345–367

    Article  Google Scholar 

  • Barthes-Biesel D (2010) Capsule motion is flow: deformation and membrane buckling. C R Phys 10:764–774

    Article  Google Scholar 

  • Barthes-Biesel D (2011) Modeling the motion of capsules in flow. Curr Opin Colloid Interface Sci 16:3–12

    Article  Google Scholar 

  • Barthes-Biesel D, Rallison J (1981) The time-dependent deformation of a capsule freely suspended in a linear shear flow. J Fluid Mech 113:251–267

    Article  Google Scholar 

  • Baskurt O, Meiselman H (2003) Blood rheology and hemodynamics. Semin Thromb Hemost 29:435–450

    Article  Google Scholar 

  • Batchelor G (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Article  Google Scholar 

  • Biben T, Farutin A, Misbah C (2011) Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram. Phys Rev E 83:031921

    Article  Google Scholar 

  • Boal DH, Seifert U, Zilker A (1992) Dual network model for red blood cell membranes. Phys Rev Lett 69:3405–3408

    Article  Google Scholar 

  • Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M, Niles JC, Suresh S, Han J (2011) A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–1073

    Article  Google Scholar 

  • Breyiannis G, Pozrikidis C (2000) Simple shear flow of suspensions of elastic capsules. Theor Comput Fluid Dyn 13:327–347

    Article  Google Scholar 

  • Casson N (1992) Rheology of disperse systems. Pergamon Press, New York, pp 84–104

    Google Scholar 

  • Chiang EY, Frenette PS (2005) Sickle cell vaso-occlusion. Hematol Oncol Clin N Am 19:771–784

    Article  Google Scholar 

  • Chien S, Usami S, Taylor HM, Lundberg JL, Gregersen MI (1966) Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J Appl Physiol 21:81–87

    Google Scholar 

  • Chien S, Usami S, Bertles JF (1970) Abnormal rheology of oxygenated blood in sickle cell anemia. J Clin Invest 49:623–634

    Article  Google Scholar 

  • Clausen JR, Reasor DA, Aidun CK (2011) The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules. J Fluid Mech 685:202–234

    Article  Google Scholar 

  • Cordasco D, Bagchi P (2014) Intermittency and synchronized motion of red blood cell dynamics in shear flow. J Fluid Mech 759:472–488

    Article  Google Scholar 

  • Cordasco D, Yazdani A, Bagchi P (2014) Comparison of erythrocyte dynamics in shear flow under different stress-free configurations. Phys Fluids 26:041902

    Article  Google Scholar 

  • Coupier G, Kaoui B, Podgorski T, Misbah C (2008) Noninertial lateral migration of vesicles in bounded poiseuille flow. Phys Fluids 20:111702

    Article  Google Scholar 

  • Coupier G, Farutin A, Minetti C, Podgorski T, Misbah C (2012) Shape diagram of vesicles in poiseuille flow. Phys Rev Lett 108:178106

    Article  Google Scholar 

  • Crowl L, Fogelson AL (2011) Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J Fluid Mech 676:348–375

    Article  Google Scholar 

  • Danker G, Misbah C (2007) Rheology of a dilute suspension of vesicles. Phys Rev Lett 98:088104

    Article  Google Scholar 

  • Danker G, Vlahovska PM, Misbah C (2009) Vesicles in poiseuille flow. Phys Rev Lett 102:148102

    Article  Google Scholar 

  • Deng MG, Li XJ, Liang HJ, Caswell B, Karniadakis GE (2012) Simulation and modeling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres. J Fluid Mech 711:192–211

    Article  Google Scholar 

  • Deschamps J, Kantsler V, Segre E, Steinberg V (2009a) Dynamics of a vesicle in general flow. Proc Natl Acad Sci USA 106:11444–11447

    Article  Google Scholar 

  • Deschamps J, Kantsler V, Steinberg V (2009b) Phase diagram of single vesicle dynamical states in shear flow. Phys Rev Lett 102:118105

    Article  Google Scholar 

  • Diez-Silva M, Dao M, Han J, Lim CT, Suresh S (2010) Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull 35:382–388

    Article  Google Scholar 

  • Dimitrakopoulos P (2012) Analysis of the variation in the determination of the shear modulus of the erythrocyte membrane: effects of the constitutive law and membrane modeling. Phys Rev E 85:041917

    Article  Google Scholar 

  • Discher DE, Boal DH, Boey SK (1998) Simulations of the erythrocyte cytoskeleton at large deformation. ii. micropipette aspiration. Biophys J 75:1584–1597

    Article  Google Scholar 

  • Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297:967–973

    Article  Google Scholar 

  • Doddi SK, Bagchi P (2008) Lateral migration of a capsule in a plane poiseuille flow in a channel. Int J Multiphase Flow 34:966–986

    Article  Google Scholar 

  • Doddi SK, Bagchi P (2009) Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys Rev E 79:046318

    Article  Google Scholar 

  • Dondorp AM, Pongponratn E, White NJ (2004) Reduced microcirculatory flow in severe falciparum malaria: pathophysiology and electron-microscopic pathology. Acta Trop 89:309–317

    Article  Google Scholar 

  • Dou Q, Ferrone FA (1993) Simulated formation of polymer domains in sickle hemoglobin. Biophys J 65:2068–2077

    Article  Google Scholar 

  • Dupin M, Halliday I, Care CM, Munn LL (2008) Lattice Boltzmann modeling of blood cell dynamics. Int J Comput Fluid Dyn 22:481–492

    Article  Google Scholar 

  • Dupire J, Socol M, Viallat A (2012) Full dynamics of a red blood cell in shear flow. Proc Natl Acad Sci USA 109:20808–20813

    Article  Google Scholar 

  • Eckstein EC, Belgacem F (1991) Model of platelet transport in flowing blood with drift and diffusion terms. Biophys J 60:53–69

    Article  Google Scholar 

  • Fai TG, Griffith BE, Mori Y, Peskin CS (2013) Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers i: numerical method and results. SIAM J Sci Comput 35:B1132–B1161

    Article  Google Scholar 

  • Fåhræus R, Lindqvist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568

    Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2010) A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys J 98:2215–2225

    Article  Google Scholar 

  • Fedosov DA, Caswell B, Suresh S, Karniadakis GE (2011a) Quantifying the biophysical characteristics of plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc Natl Acad Sci USA 108:35–39

    Article  Google Scholar 

  • Fedosov DA, Lei H, Caswell B, Suresh S, Karniadakis GE (2011b) Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput Biol 7:e1002270

    Article  Google Scholar 

  • Fedosov DA, Pan WX, Caswell B, Gompper G, Karniadakis GE (2011c) Predicting human blood viscosity in silico. Proc Natl Acad Sci USA 108:11772–11777

    Article  Google Scholar 

  • Fedosov DA, Fornleitner J, Gompper G (2012) Margination of white blood cells in microcapillary flow. Phys Rev Lett 108:028104

    Article  Google Scholar 

  • Fedosov DA, Peltomäki M, Gompper G (2014a) Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft matter 10:4258–4267

    Article  Google Scholar 

  • Fedosov DA, Dao M, Karniadakis GE, Suresh S (2014b) Computational biorheology of human blood flow in health and disease. Ann Biomed Eng 42:368–387

    Article  Google Scholar 

  • Fischer TM, Stohr-Lissen M, Schmid-Schonbein H (1978) The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202:894–896

    Article  Google Scholar 

  • Freund JB (2007) Leukocyte margination in a model microvessel. Phys Fluids 19:023301

    Article  Google Scholar 

  • Freund JB (2014) Numerical simulation of flowing blood cells. Ann Rev Fluid Mech 46:67–95

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics: Mechanical properties of living tissues, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Gross M, Krüger T, Varnik F (2014) Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects. Soft Matter 10:4360–4372

    Article  Google Scholar 

  • Hanasaki I, Walther JH, Kawano S, Koumoutsakos P (2010) Coarse-grained molecular dynamics simulations of shear-induced instabilities of lipid bilayer membranes in water. Phys Rev E 82:051602

    Article  Google Scholar 

  • Hao W, Xu Z, Liu C, Lin G (2015) A fictitious domain method with a hybrid cell model for simulating motion of cells in fluid flow. J Comput Phys 280:345–362

    Article  Google Scholar 

  • Hochmuth R, Worthy P, Evans E (1979) Red cell extensional recovery and the determination of membrane viscosity. Biophy J 26:101–114

    Article  Google Scholar 

  • Hosseini SM, Feng JJ (2012) How malaria parasites reduce the deformability of infected RBC. Biophy J 103:1–10

    Article  Google Scholar 

  • Imai Y, Nakaaki K, Kondo H, Ishikawa T, Lim CT, Yamaguchi T (2010) Modeling of hemodynamics arising from malaria infection. J Biomech 43:1386–1393

    Article  Google Scholar 

  • Imai Y, Kondo H, Ishikawa T, Lim CT, Yamaguchi T (2011) Margination of red blood cells infected by plasmodium falciparum in a microvessel. J Biomech 44:1553–1558

    Article  Google Scholar 

  • Kantsler V, Steinberg V (2005) Orientation and dynamics of a vesicle in tank-treading motion in shear flow. Phys Rev Lett 95:258101

    Article  Google Scholar 

  • Kantsler V, Steinberg V (2006) Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys Rev Lett 96:036001

    Article  Google Scholar 

  • Kaul DK, Xue H (1991) Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. Blood 77:1353–1361

    Google Scholar 

  • Keller SR, Skalak R (1982) The algorithm is based on an idealized ellipsoidal model of the tank-treading cell. J Fluid Mech 120:27–47

    Article  Google Scholar 

  • Kotsalis EM, Hanasaki I, Walther JH, Koumoutsakos P (2010) Non-periodic Molecular Dynamics simulations of coarse grained lipid bilayer in water. Comput Math Appl 59:2370–2373

    Article  Google Scholar 

  • Kraus M, Wintz W, Seifert U, Lipowsky R (1996) Fluid vesicles in shear flow. Phys Rev Lett 77:3685

    Article  Google Scholar 

  • Kumar A, Graham MD (2012a) Accelerated boundary integral method for multiphase flow in non-periodic geometries. J Comput Phys 231:6682–6713

    Article  Google Scholar 

  • Kumar A, Graham MD (2012b) Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett 109:108102

    Article  Google Scholar 

  • Lac E, Barthes-Biesel D, Pelekasis N, Tsamopoulos J (2004) Spherical capsules in three-dimensional unbounded stokes flows: effect of the membrane constitutive law and onset of buckling. J Fluid Mech 516:303–334

    Article  Google Scholar 

  • Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259:381–392

    Article  Google Scholar 

  • Lei H, Karniadakis G (2013) Probing vasoocclusion phenomena in sickle cell anemia via mesoscopic simulations. Proc Natl Acad Sci USA 110:11326–11330

    Article  Google Scholar 

  • Lei H, Karniadakis GE (2012) Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys J 102:185–194

    Article  Google Scholar 

  • Li H, Lykotrafitis G (2011) A coarse-grain molecular dynamics model for sickle hemoglobin fibers. J Mech Behav Biomed Mater 4:162–173

    Article  Google Scholar 

  • Li H, Ha V, Lykotrafitis G (2012a) Modeling sickle hemoglobin fibers as one chain of coarse-grained particles. J Biomech 45:1947–1951

    Article  Google Scholar 

  • Li H, Lykotrafitis G (2012b) Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. Biophys J 102:75–84

    Article  Google Scholar 

  • Li H, Lykotrafitis G (2014a) Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophys J 107:642–653

    Article  Google Scholar 

  • Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88:3707–3719

    Article  Google Scholar 

  • Li J, Lykotrafitis G, Dao M, Suresh S (2007) Cytoskeletal dynamics of human erythrocyte. Proc Natl Acad Sci USA 104:4937–4942

    Article  Google Scholar 

  • Li XJ, Pivkin IV, Liang HJ, Karniadakis GE (2009) Shape transformations of membrane vesicles from amphiphilic triblock copolymers: a dissipative particle dynamics simulation study. Macromolecules 42:3195–3200

    Article  Google Scholar 

  • Li XJ, Caswell B, Karniadakis GE (2012c) Effect of chain chirality on the self-assembly of sickle hemoglobin. Biophys J 103:1130–1140

    Article  Google Scholar 

  • Li XJ, Popel AS, Karniadakis GE (2012d) Blood-plasma separation in y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys Biol 9:026010

    Article  Google Scholar 

  • Li XJ (2013a) Shape transformations of bilayer vesicles from amphiphilic block copolymers: a dissipative particle dynamics simulation study. Soft Matter 9:11663–11670

    Article  Google Scholar 

  • Li XJ, Vlahovska PV, Karniadakis GE (2013b) Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9:28–37

    Article  Google Scholar 

  • Li XJ, Peng ZL, Lei H, Dao M, Karniadakis GE (2014b) Probing red blood cell mechanics, rheology and dynamics with a two-component multiscale model. Phil Trans R Soc A 372:20130389

    Article  Google Scholar 

  • Li XJ, Tang Y-H, Liang HJ, Karniadakis GE (2014c) Large-scale dissipative particle dynamics simulations of self-assembled amphiphilic systems. Chem Commun 50:8306–8308

    Article  Google Scholar 

  • Lipowsky R (1991) The conformation of membranes. Nature 349:475–481

    Article  Google Scholar 

  • Liu SC, Derick LH, Zhai S, Palek J (1991) Uncoupling of the spectrin-based skeleton from the lipid bilayer in sickled red cells. Science 252:574–576

    Article  Google Scholar 

  • McWhirter JL, Noguchi H, Gompper G (2009) Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc Natl Acad Sci USA 106:6039–6043

    Article  Google Scholar 

  • McWhirter JL, Noguchi H, Gompper G (2011) Deformation and clustering of red blood cells in microcapillary flows. Soft Matter 7:10967–10977

    Article  Google Scholar 

  • Merrill EW, Gilliland ER, Cokelet G, Shin H, Britten A, Wells RE (1963) Rheology of human blood near and at zero flow. Biophys J 3:199–213

    Article  Google Scholar 

  • Misbah C (2006) Vacillating breathing and tumbling of vesicles under shear flow. Phys Rev Lett 96:028104

    Article  Google Scholar 

  • Mujumdar A, Beris AN, Metzner AB (2002) Transient phenomena in thixotropic systems. J Nonnewton Fluid Mech 102:157–178

    Article  Google Scholar 

  • Narsimhan V, Zhao H, Shaqfeh ES (2013) Coarse-grained theory to predict the concentration distribution of red blood cells in wall-bounded couette flow at zero reynolds number. Phys Fluids 25:061901

    Article  Google Scholar 

  • Noguchi H, Gompper G (2004) Fluid vesicles with viscous membranes in shear flow. Phys Rev Lett 93:258102

    Article  Google Scholar 

  • Noguchi H, Gompper G (2005a) Dynamics of fluid vesicles in shear flow: Effect of membrane viscosity and thermal fluctuations. Phys Rev E 72:011901

    Article  Google Scholar 

  • Noguchi H, Gompper G (2005b) Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc Natl Acad Sci USA 102:14159–14164

    Article  Google Scholar 

  • Noguchi H, Gompper G (2007) Swinging and tumbling of fluid vesicles in shear flow. Phys Rev Lett 98:128103

    Article  Google Scholar 

  • Pan TW, Wang T (2009) Dynamical simulation of red blood cell rheology in microvessels. Int J Numer Anal Mod 6:455–473

    Google Scholar 

  • Pan W, Caswell B, Karniadakis GE (2010) A low-dimensional model for the red blood cell. Soft Matter 6:4366–4376

    Article  Google Scholar 

  • Park YK, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld MS, Suresh S (2008) Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci USA 105:13730–13735

    Article  Google Scholar 

  • Park YK, Best CA, Auth T, Gov NS, Safran SA, Popescu G, Suresh S, Feld MS (2010) Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci USA 107:1289–1294

    Article  Google Scholar 

  • Peskin CS (2002) The immersed boundary method. Acta numerica 11:479–517

    Article  Google Scholar 

  • Peng Z, Asaro RJ, Zhu Q (2010) Multiscale simulation of erythrocyte membranes. Phys Rev E 81:031904

    Article  Google Scholar 

  • Peng Z, Li XJ, Pivkin IV, Dao M, Karniadakis GE, Suresh S (2013) Lipid–bilayer and cytoskeletal interactions in a red blood cell. Proc Natl Acad Sci USA 110:13356–13361

    Article  Google Scholar 

  • Peng Z, Mashayekh A, Zhu Q (2014) Erythrocyte responses in low-shear-rate flows: effects of non-biconcave stress-free state in the cytoskeleton. J Fluid Mech 742:96–118

    Article  Google Scholar 

  • Peng Z, Salehyar S, Zhu Q (2015) Stability of the tank treading modes of erythrocytes and its dependence on cytoskeleton reference states. journal of fluid mechanics. J Fluid Mech 771:449–467

    Article  Google Scholar 

  • Pietzsch J (2004) Mind the membrane. Horizon Symposia: Living Frontier. Nature Publishing Group

  • Pivkin IV, Karniadakis GE (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101:118105

    Article  Google Scholar 

  • Pozrikidis C (2003) Modeling and simulation of capsules and biological cells. CRC Press

  • Puig-de-Morales-Marinkovic M, Turner KT, Butler JP, Fredberg JJ, Suresh S (2007) Viscoelasticity of the human red blood cell. Am J Physiol Cell Physiol 293:C597–C605

    Article  Google Scholar 

  • Qin Z, Durand LG, Allard L, Cloutier G (1998) Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using rf backscattered power. Ultrasound Med Biol 24:503–511

    Article  Google Scholar 

  • Quinn DJ, Pivkin IV, Wong SK, Chiam KH, Dao M, Karniadakis GE, Suresh S (2011) Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Ann Biomed Eng 39:1041–1050

    Article  Google Scholar 

  • Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143

    Article  Google Scholar 

  • Reasor Jr DA, Mehrabadi M, Ku DN, Aidun CK (2013) Determination of critical parameters in platelet margination. Ann Biomed Eng 41:238–249

    Article  Google Scholar 

  • Rehage H, Husmann M, Walter A (2002) From two-dimensional model networks to microcapsules. Rheol Acta 41:292–306

    Article  Google Scholar 

  • Ryman BE, Tyrrell DA (1979) Liposomes—methodology and applications. Front Biol 48:549–74

    Google Scholar 

  • Samsel RW, Perelson AS (1982) Kinetics of rouleau formation. i. a mass action approach with geometric features. Biophys J 37:493–514

    Article  Google Scholar 

  • Secomb T, Styp-Rekowska B, Pries AR (2007) Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Ann Biomed Eng 35:755

    Article  Google Scholar 

  • Shi L, Pan TW, Glowinski R (2014) Three-dimensional numerical simulation of red blood cell motion in poiseuille flows. Int J Numer Meth Fl 76(7):397–415

    Article  Google Scholar 

  • Singh RK, Li X, Sarkar K (2014) Lateral migration of a capsule in plane shear near a wall. J Fluid Mech 739:421–443

    Article  Google Scholar 

  • Skalak R, Tozeren A, Zarda R, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13:245–264

    Article  Google Scholar 

  • Skalak R, Keller SR, Secomb TW (1981) Mechanics of blood flow. J Biomech Eng 103:102–115

    Article  Google Scholar 

  • Spann AP, Zhao H, Shaqfeh ES (2014) Loop subdivision surface boundary integral method simulations of vesicles at low reduced volume ratio in shear and extensional flow. Phys Fluids 26:031902

    Article  Google Scholar 

  • Sui Y, Low H, Chew Y, Roy P (2008) Tank-treading, swinging, and tumbling of liquid-filled elastic capsules in shear flow. Phys Rev E 77:016310

    Article  Google Scholar 

  • Sun C, Migliorini C, Munn LL (2003) Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys J 85:208–222

    Article  Google Scholar 

  • Tilles AW, Eckstein EC (1987) The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc Res 33:211–223

    Article  Google Scholar 

  • Tokarev A, Butylin A, Ermakova E, Shnol E, Panasenko G, Ataullakhanov F (2011) Finite platelet size could be responsible for platelet margination effect. Biophys J 101:1835–1843

    Article  Google Scholar 

  • Vahidkhah K, Bagchi P (2015) Microparticle shape effects on margination, near-wall dynamics and adhesion in a three-dimensional simulation of red blood cell suspension. Soft Matter 11:2097–2109

    Article  Google Scholar 

  • Vahidkhah K, Diamond SL, Bagchi P (2014) Platelet dynamics in three-dimensional simulation of whole blood. Biophys J 106:2529–2540

    Article  Google Scholar 

  • Veerapaneni SK, Rahimian A, Biros G, Zorin D (2011a) A fast algorithm for simulating vesicle flows in three dimensions. J Comput Phys 230:5610–5634

    Article  Google Scholar 

  • Veerapaneni SK, Young YN, Vlahovska PM, Blawzdziewicz J (2011b) Dynamics of a compound vesicle in shear flow. Phys Rev Lett 106:158103

    Article  Google Scholar 

  • Vitkova V, Mader MA, Polack B, Misbah C, Podgorski T (2008) Micro-macro link in rheology of erythrocyte and vesicle suspensions. Biophys J 95:L33–L35

    Article  Google Scholar 

  • Winkler RG, Fedosov DA, Gompper G (2014) Dynamical and rheological properties of soft colloid suspensions. Curr Opin Colloid Interface Sci 19:594–610

    Article  Google Scholar 

  • Woldhuis B, Tangelder G, Slaaf DW, Reneman RS (1992) Concentration profile of blood platelets differs in arterioles and venules. Am J Physiol Heart Circ Physiol 262:H1217–H1223

    Google Scholar 

  • Wu TH, Feng JJ (2013) Simulation of malaria-infected red blood cells in microfluidic channels: passage and blockage. Biomicrofluidics 7:044115

    Article  Google Scholar 

  • Yazdani A, Bagchi P (2012) Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method. Phys Rev E 85:056308

    Article  Google Scholar 

  • Yazdani A, Bagchi P (2013) Influence of membrane viscosity on capsule dynamics in shear flow. J Fluid Mech 718:569–595

    Article  Google Scholar 

  • Yazdani AZ, Bagchi P (2011) Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow. Phys Rev E 84:026314

    Article  Google Scholar 

  • Ye T, Phan-Thien N, Khoo BC, Lim CT (2014) Numerical modelling of a healthy/malaria-infected erythrocyte in shear flow using dissipative particle dynamics method. J Appl Phys 115 :224701

    Article  Google Scholar 

  • Zhao H, Isfahani AH, Olson LN, Freund JB (2010) A spectral boundary integral method for flowing blood cells. J Comput Phys 229:3726–3744

    Article  Google Scholar 

  • Zhao H, Shaqfeh ES (2011a) The dynamics of a vesicle in simple shear flow. J Fluid Mech 674:578–604

    Article  Google Scholar 

  • Zhao H, Shaqfeh ES (2011b) Shear-induced platelet margination in a microchannel. Phys Rev E 83:061924

    Article  Google Scholar 

  • Zhao H, Shaqfeh ES (2013) The dynamics of a non-dilute vesicle suspension in a simple shear flow. J Fluid Mech 725:709–731

    Article  Google Scholar 

  • Zhao H, Spann AP, Shaqfeh ES (2011) The dynamics of a vesicle in a wall-bound shear flow. Phys Fluids 23:121901

    Article  Google Scholar 

  • Ou-Yang Z-C, Helfrich W (1989) Bending energy of vesicle membranes: general expressions for the first, second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A 39:5280

    Article  Google Scholar 

  • Zhu L, Brandt L (2014) The motion of a deforming capsule through a corner. arXiv preprint arXiv:14090155

  • Zupancic Valant A, Ziberna L, Papaharilaou Y, Anayiotos A, Georgiou G (2011) The influence of temperature on rheological properties of blood mixtures with different volume expander—implications in numerical arterial hemodynamics simulations. Rheol Acta 50:389–402

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the National Institutes of Health (NIH) grants U01HL114476 and U01HL116323. A.Y. acknowledges TACC/STAMPEDE resources through XSEDE grant (TG-DMS140007), and X.L. acknowledges ALCF through INCITE program for providing computational resources that have lead to the unpublished research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Em Karniadakis.

Additional information

This paper belongs to the special issue on the “Rheology of blood cells, capsules and vesicles.”

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani, A., Li, X. & Karniadakis, G.E. Dynamic and rheological properties of soft biological cell suspensions. Rheol Acta 55, 433–449 (2016). https://doi.org/10.1007/s00397-015-0869-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0869-4

Keywords

Navigation